

Welcome to pypolibox’s documentation!

Contents:

	pypolibox
	Installation

	Usage

	Documentation

	Package Overview

	Licence

	Contributors

	Acknowledgements

	pypolibox
	pypolibox Package

	News
	1.0.2 (2014-05-17)

	1.0.1 (2014-05-13)

	1.0.0 (2014-30-04)

	To-do list

Indices and tables

	Index

	Module Index

	Search Page

pypolibox

[image: _images/pypolibox.svg]

 [https://pypi.python.org/pypi/pypolibox#downloads][image: http://img.shields.io/pypi/v/pypolibox.svg]

 [https://pypi.python.org/pypi/pypolibox][image: _images/license-GPL-yellow.svg]

 [http://opensource.org/licenses/GPL-3.0]pypolibox is a database-to-text generation (NLG) software built
on Python 2.7, NLTK and Nicholas FitzGerald’s pydocplanner.

Using a database of technical books and some user input, pypolibox
generates sentences descriptions. These descriptions are then used by
the OpenCCG surface realiser to generate written sentences in German.

Installation

Prerequisites

In order to generate sentences (instead of abstract sentence
descriptions), you will need to install OpenCCG [http://openccg.sourceforge.net/] (tested with version
0.9.5). Make sure that you can call tccg from the command line,
e.g. by adding the openccg/bin directory to your $PATH.

Under Linux, you’d have to add something like this to your .bashrc:

export PATH=/home/username/bin/openccg/bin:$PATH

export OPENCCG_HOME=/home/username/bin/openccg
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64

Under Windows, you’ll have to set the environment variables [http://www.voidspace.org.uk/python/articles/command_line.shtml#environment-variables]
OPENCCG_HOME, JAVA_HOME and add the full path of your
openccg/bin directory to the PATH variable.

pywin32 [http://sourceforge.net/projects/pywin32/] also needs to be installed under Windows.

Install from PyPI

pip install pypolibox

Under Linux, you might have to prepend that command with sudo or
execute it as root. Under Windows, you’ll need to run this command in a
console with administrator rights [http://superuser.com/a/88504].

Install from source

You might also need superuser/admin rights for this (see above).

git clone https://github.com/arne-cl/pypolibox.git
cd pypolibox
python setup.py install

Usage

Command line usage

pypolibox can be used from the command line or from within a Python
interpreter. To see all the available options, enter:

pypolibox -h

To find books that are written in German and use the
programming language Prolog, type:

pypolibox --language German --proglang Prolog

or, if you prefer short but cryptic commands:

pypolibox -l German -p Prolog

You can choose between several output formats using the -o or
--output-format argument.

	openccg generates sentences using OpenCCG (default option)

	textplan-xml generates an XML representation of the textplans

	textplan-featstruct generates a feature structure representation (nltk.featstruct)

	hlds generates an HLDS XML representations of all the sentences.

In future versions, you will be able to choose between several output
natural languages the -d or --output-language argument
(currently only German is supported).

The following example query will generate HLDS XML snippets describing books
about Prolog written in German:

pypolibox --language German --proglang Prolog --output-format hlds

Further usage examples can be found in the pypolibox.database.Query
class documentation.

Library usage

If you’d like to access pypolibox from
within a Python interpreter, you can simply use the same arguments.
Instead of a string like -l German -p Prolog, you will have to
provide your arguments as a list of strings:

Query(["-l", "German", "-p", "Prolog"])

This query would be equivalent to the command line queries above.
pypolibox is built as a pipeline, where each important step is
represented by a class. Each of these classes function as the input
of the next class in the pipeline, e.g.:

query = Query(["-l", "German", "-p", "Prolog"])
Results(query)
Books(Results(query))
...
TextPlans(AllMessages(AllPropositions(AllFacts(Books(Results(query))))))

If you instanciate a Query with your query arguments, you can use
this Query instance as the input of a Results instance
(which contains the data that the database provided for your query),
which in turn can be used as the input of a Books instance etc.

Of course, you wouldn’t want to chain all those classes just to retrieve
textplans. To do so, simply use one of the functions provided in the
debug module, either by running the debug.py file in
the interpreter or by importing it:

import debug
debug.gen_textplans(["-l", "German", "-p", "Prolog"])

This function call would return the same results as the aforementioned
command line calls. For further testing, try
debug.testqueries and debug.error_testqueries, which
basically are lists of predefined valid and invalid query arguments and which
can be used to query the database (and see how errors are handled).

Documentation

The documentation is available online [http://pypolibox.readthedocs.org],
but you can always get an up-to-date local copy using Sphinx [http://sphinx-doc.org/].

You can generate an HTML or PDF version by running these commands in
pypolibox’s docs directory:

make latexpdf

to produce a PDF (docs/_build/latex/pypolibox.pdf) and

make html

to produce a set of HTML files (docs/_build/html/index.html).

Package Overview

The pypolibox package contains the following modules:

	The pypolibox module is the main module, which is invoked from the
command line.

	The database module handles the user input, queries the database and
returns the results.

	facts converts those results into attribute value matrices.

	The propositions module evaluates those facts (positive, negative,
neutral).

	The textplan module takes those propositions and turns them into
messages. In contrast to propositions, messages do not contain duplicates
and add comparative information. Rules will be used to combine those
message into constituent sets and ultimately into one text plan. The
textplan module also allows exporting those text plans in XML format.

	The rules module contains the rules used by be the textplan module
to combine messages into constituent sets and textplans, respectively.

	The messages module generates messages from propositions, which will
be used by the textplan module.

	The lexicalize_messageblocks is the “main” module of the
lexicalization. For each message block in a textplan, it generates one or
more possible lexicalizations which are then realized by the
realization module.

	The lexicalization module generates lexicalizations (in HLDS-XML
format) for each message, which are used by the
lexicalize_messageblocks module to form lexicalizations of complete
message blocks.

	A note on terminology: A message block in pypolibox is basically an
instance of the Message class, e.g an “id” message block. This
“id” message block in turn consists of several messages, e.g. an
“authors” message and a “title” message.

	The realization module takes a lexicalized phrase or sentence (in
HLDS-XML format) and converts it into a surface realization (with the
help of OpenCCGs tccg executable).

	The hlds module allows to convert textplans from a
nltk.featstruct-based format to HLDS-XML and vice versa. In addition, the
module can produce attribute-value matrices of these textplans as
LaTeX/PDF files.

Licence

The code is licensed under GPL Version 3. The grammar fragment is licensed
under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License [http://creativecommons.org/licenses/by-nc-sa/4.0/].

Contributors

Arne Neumann (original author), Pablo Duboue

Acknowledgements

This software reimplements parts of the Java-based JPolibox
text-generation software written by Alexandra Strelakova, Felix Dombek,
Mathias Langer and Till Kolter. pypolibox also includes a heavily
modified version of Nicholas FitzGerald’s pydocplanner, which he
released under a Creative Commons license (not specified further).
The German OpenCCG grammar fragment that comes with pypolibox was written by
Martin Oltmann.

pypolibox

	pypolibox Package
	pypolibox Package

	database Module

	debug Module

	facts Module

	hlds Module

	lexicalization Module

	lexicalize_messageblocks Module

	messages Module

	propositions Module

	pypolibox Module

	realization Module

	rules Module

	textplan Module

	util Module

pypolibox Package

pypolibox Package

database Module

The database module is responsible for parsing the user’s requirements
(both from command line options, as well as interactively from the Python
interpreter), transforming these requirements into an SQL query, querying the
sqlite database and returning the results.

	
class pypolibox.database.Book(db_item, db_columns, query_args)

	a Book instance represents one book from a database query

	
get_number_of_book_matches()

	calculates the number of query parameters that a book matches

	Return type

	int

	
class pypolibox.database.Books(results)

	a Books instance stores all books that were found by a database query
as a list of Book instances in self.books

	
get_book_ranks(possible_matches)

	ranks ‘OR query’ results according to the number of query parameters
they match.

	Parameters

	possible_matches (int) – the number of (meaningful) parameters of the query.

	Returns

	book_ranks – a list of tuples, where each tuple consists of the score of
a book and its index in self.books

	Return type

	list of (float, int) tuples

	
class pypolibox.database.Query(argv)

	a Query instance represents one user query to the database

Queries can be made from the command line, as well as from the Python
interpreter. From the command line, queries can be made using either
abbreviated or long parameters. The following examples both query the
database for books that contain code examples and deal with both semantics
and parsing:

python pypolibox.py -k semantics, parsing -c 1
python pypolibox.py --keywords semantics, parsing --codeexamples 1

When calling pypolibox.py from within the Python interpreter, the same
query can be made using the following command:

Query(["-k", "semantics", "parsing", "-c", "1"])

If you print the Query instance (by using the print command), it
will return the SQL query that was constructed from the user input:

SELECT * FROM books WHERE keywords like '%semantics%' AND keywords
like '%parsing%' AND examples = 1

TODO: This module talks directly to the database. To make it easier to
adapt pypolibox to a different domain, an SQL abstraction layer (e.g.
SQL Alchemy) should be used.

	
class pypolibox.database.Results(query)

	A Results instance sends queries to the database, retrieves and stores
the results.

	
get_number_of_possible_matches()

	Counts the number of query paramters that could be matched by books
from the results set. The actual scoring of books takes place in
Books.get_book_ranks().

For example, if a query contains the parameters:

keywords = pragmatics, keywords = semantics, language = German

it means that a book could possible match 3 parameters
(possible_matches = 3).

	Returns

	the number of possible matches

	Return type

	int

	
get_table_header(table_name)

	get the column names (e.g. title, year, authors) and their index from
the books table of the db and return them as a dictionary.

	Parameters

	table_name (str) – name of a database table, e.g. ‘books’

	Returns

	a dictionary, which contains the names of the table columns

as keys and their index as values
:rtype: dict, with str keys and int values

	
pypolibox.database.get_column(column_name)

	debugging: primitive db query that returns all the values stored in a
column, e.g. get_column(“title”) will return all book titles stored in
the database

	Return type

	list of str

debug Module

The debug module contains a number of functions, which can be used to test
the behaviour of pypolibox’ classes, test its error handling or simply
provides short cuts to generate frequently needed data.

	
pypolibox.debug.abbreviate_textplan(textplan)

	recursive helper function that prints only the skeletton of a textplan
(message types and RST relations but not the actual message content)

	Parameters

	textplan (TextPlan or ConstituentSet or Message) – a text plan, a constituent set or a message

	Returns

	a message (without the attribute value pairs stored in it)

	Return type

	Message

	
pypolibox.debug.apply_rule(messages, rule_name)

	debugging: take a rule and apply it to your list of messages.

the resulting ConstituentSet will be added to the list, while the
messages involved in its construction will be removed. repeat this step
until you’ve found an erroneous/missing rule.

	
pypolibox.debug.compare_hlds_variants()

	TODO: kill bugs

BUG1: sentence001-original-test contains 2(!) <item> sentences.

	
pypolibox.debug.compare_textplans()

	helps to find out how many different text plan structures there are.

	
pypolibox.debug.enumprint(obj)

	prints every item of an iterable on its own line, preceded by its index

	
pypolibox.debug.find_applicable_rules(messages)

	debugging: find out which rules are directly (i.e. without forming ConstituentSets first) applicable to your messages

	
pypolibox.debug.findrule(ruletype='', attribute='', value='')

	debugging: find rules that have a certain ruleType and some
attribute-value pair

Example: findrule(“Concession”, “nucleus”, “usermodel_match”) finds
rules of type ‘Concession’ where rule.nucleus == ‘usermodel_match’.

	
pypolibox.debug.gen_all_messages_of_type(msg_type)

	generate all messages for all books from all testqueries, but return
only those which match the given message type, e.g. ‘id’ or ‘extra’.

	
pypolibox.debug.gen_all_textplans()

	generates all text plans for each query in the predefined list of test
queries.

	Return type

	list of ``TextPlan``s or ``str``s

	Returns

	

	
pypolibox.debug.gen_textplans(query)

	debug function: generates all text plans for a query.

	Parameters

	query (int or list of str) – can be the index of a test query (e.g. 4) OR a list of

query parameters (e.g. [“-k”, “phonology”, “-l”, “German”])

	Return type

	TextPlans

	Returns

	a TextPlans instance, containing a number of text plans

	
pypolibox.debug.genallmessages(query)

	debug function: generates all messages plans for a query.

	Parameters

	query (int or list of str) – can be the index of a test query (e.g. 4) OR a list of

query parameters (e.g. [“-k”, “phonology”, “-l”, “German”])

	Return type

	AllMessages

	Returns

	all messages that could be generated for the query

	
pypolibox.debug.genmessages(booknumber=0, querynumber=10)

	generates all messages for a book regarding a specific database query.

	Parameters

	booknumber (int) – the index of the book from the results list (“0”

would be the first book with the highest score)

	Parameters

	querynumber (int) – the index of a query from the predefined list of

test queries (named ‘testqueries’)

	Return type

	list of ``Message``s

	
pypolibox.debug.genprops(querynumber=10)

	generates all propositions for all books in the database concerning a
specific query.

	Parameters

	querynumber (int) – the index of a query from the predefined list of

test queries (named ‘testqueries’)

	Return type

	AllPropositions

	
pypolibox.debug.msgtypes(messages)

	print message types / rst relation types, no matter which data
structure is used to represent them

	
pypolibox.debug.printeach(obj)

	prints every item of an iterable on its own line

	
pypolibox.debug.test_cli(query_arguments=[[], ['-k', 'pragmatics'], ['-k', 'pragmatics', '-r', '4'], ['-k', 'pragmatics', 'semantics'], ['-k', 'pragmatics', 'semantics', '-r', '7'], ['-l', 'German'], ['-l', 'German', '-p', 'Lisp'], ['-l', 'German', '-p', 'Lisp', '-k', 'parsing'], ['-l', 'English', '-s', '0', '-c', '1'], ['-l', 'English', '-s', '0', '-e', '1', '-k', 'discourse'], ['-k', 'syntax', 'parsing', '-l', 'German', '-p', 'Prolog', 'Lisp', '-s', '2', '-t', '0', '-e', '1', '-c', '1', '-r', '7']])

	run several complex queries and print their results to stdout

facts Module

The facts module takes the information stored in Book instances and
converts them into attribute value matrices (Facts). Furthermore, the
module compares each book with its predecessor (e.g. book A is newer than book
B and has code examples, while B is shorter and targets beginners …). The
insights gathered from these comparisons are also stored in Facts
instances.

	
class pypolibox.facts.AllFacts(b)

	Simply speaking, an AllFacts instance contains all facts about all
books that were returned by a database query. More formally, it contains a
Facts instance for each Book in a Books instance.

In a Books instance, all books returned by a database query are sorted
by the number of query parameters they match (‘user model match’) in
descending order. This means, that AllFacts will contain facts about
the best-matching book, followed by facts about the second-best matching
book (including a comparison to the best matching one), followed by facts
about the third-best matching book (including a comparison to the second
one) etc.

	
class pypolibox.facts.Facts(book, book_score, index=0, preceding_book=False)

	A Facts instance represents facts about a single book, but also
contains a comparison of that particular book with its predecessor.

	
generate_extra_facts(index, book)

	generates extra_facts, if the current book is very new/old or very
short/long.

	Parameters

	
	index (int) – the index of the book in the Books list of books

	book (Book) – a Book instance

	Returns

	a dictionary that contains information about the recency and

length of a book
:rtype: dict

	
generate_id_facts(index, book)

	generates a dictionary of id facts about the current book which will be
stored in self.facts["id_facts"]. In contrast to other facts,
id_facts are those kind of facts that can be directly retrieved
from the database (i.e. there is no comparison between books or
reasoning involved). The id_facts dictionary contains the following
keys:

id_facts keys database book table columns

'authors'
'codeexamples' 'examples'
'exercises'
'keywords'
'language' 'lang'
'pages'
'proglang' 'plang'
'target'
'title'
'year'

The key names should be self-exlanatory. In those cases where they do
not exactly match their counterparts in the database, the
corresponding database table column name is given in the table above.

	Parameters

	
	index (int) – the index of the book in the Books list of books

	book (Book) – a Book instance

	Returns

	a dictionary with the keys described above

	Return type

	dict

	
generate_lastbook_facts(index, book, preceding_book)

	generates facts that compare the current book with the preceding one.
A typical example of a lastbook_facts dictionary would look like
this:

lastbook_facts:
 lastbook_nomatch:
 {'language': 'German',
 'keywords_preceding_book_only':
 set(['pragmatics', 'chart parsing']),
 'keywords_current_book_only':
 set([' ', 'grammar', 'language hierarchy', 'corpora',
 'syntax', 'morphology', 'left associative
 grammar']),
 'codeexamples': 0,
 'proglang': set(['Lisp']),
 'newer': 11,
 'keywords':
 set([' ', 'grammar', 'language hierarchy', 'corpora',
 'syntax', 'left associative grammar', 'morphology',
 'chart parsing', 'pragmatics']),
 'proglang_preceding_book_only':
 set(['Lisp'])}
 lastbook_match:
 {'exercises': 1, 'keywords': set(['semantics',
 'parsing']), 'target': 0, 'pagerange': 1}

This method will calculate if is newer/older/shorter/longer than its
predecessor (if so, it will store the difference as an integer). For
keys that have sets as their values (keywords and proglang),
the resulting dictionary will list which values differed and which
were only present in either the preceding or the current book.

	Parameters

	
	index (int) – the index of the book in the Books list of books

	book (Book) – a Book instance

	preceding_book – if True, there is a book preceding this one

and both books will be compared
:type preceding_book: bool

	Returns

	a dictionary with two keys: lastbook_match and

lastbook_nomatch, which in turn are dictionaries themselves and
contain facts that are shared between the two books (lastbook_match)
or that differ between the two (lastbook_nomatch).

	
generate_query_facts(index, book, book_score)

	generates facts that describes if a book matches (parts of) the query
(a.k.a the user model). a typical query_facts dictionary will look
like this:

query_facts:
 usermodel_nomatch: {'codeexamples': 0}
 usermodel_match: {'exercises': 1, 'keywords':
 set(['semantics', 'parsing']), 'language':
 'German'}
 book_score: 0.8

The book described in this examples matches 80 % of the user
requirements (it contains exercises and deals with semantics and
parsing and is written in German) but does not contain code examples
(as was asked for by the user).

	Parameters

	
	index (int) – the index of the book in the Books list of books

	book (Book) – a Book instance

	book_score – the score of the book that was calculated in

Books.get_book_ranks()
:type book_score: float

	Returns

	a dictionary that contains three keys, the book_score,

the usermodel_match as well as the usermodle_nomatch.
‘usermodel_match’ contains all the features that were requested by
the user and are present in the book. ‘usermodle_nomatch’ contains
all features that were requested but are missing from the book.
:rtype: dict

hlds Module

HLDS (Hybrid Logic Dependency Semantics) is the format internally used by the
OpenCCG realizer. This module shall allow the conversion between HLDS-XML
files and NLTK feature structures. In addition, it can also be used as a
commandline to convert HLDS-XML files in printable versions of
``nltk.FeatStruct``s. The following command produces a LaTeX file that can be
compiled into a PDF:

python hlds.py --format latex --outfile output.tex input1.xml input2.xml

Alternatively, you can also produce ‘ASCII art’ with this command:

python hlds.py --format nltk --outfile output.tex input1.xml input2.xml

This way, the phrase ‘das Buch’ can be transformed from this HLDS-XML
representation:

<?xml version="1.0" encoding="UTF-8"?>
<xml>
 <lf>
 <satop nom="b1:artefaktum">
 <prop name="Buch"/>
 <diamond mode="NUM">
 <prop name="sing"/>
 </diamond>
 <diamond mode="ART">
 <nom name="d1:sem-obj"/>
 <prop name="def"/>
 </diamond>
 </satop>
 </lf>
 <target>das Buch</target>
</xml>

To this attribute-value matrix (LaTeX):

\begin{avm}
 \[$*$nom$*$ & `b1:artefaktum' \\
 $*$prop$*$ & `Buch' \\
 $*$text$*$ & `das Buch' \\
 NUM & \[prop & `sing' \] \\
 ART & \[nom & `d1:sem-obj' \\
 prop & `def' \] \\
 \]
\end{avm}

or this one (plain text):

[*root_nom* = 'b1:artefaktum']
[*root_prop* = 'Buch']
[*text* = 'das Buch']
[]
[00__NUM = [*mode* = 'NUM']]
[[prop = 'sing']]
[]
[[*mode* = 'ART']]
[01__ART = [nom = 'd1:sem-obj']]
[[prop = 'def']]

	
class pypolibox.hlds.Diamond(features=None, **morefeatures)

	Bases: nltk.featstruct.FeatDict

A {Diamond} represents an HLDS diamond in form of a (nested) feature
structure containing the elements nom? prop? diamond*

<diamond mode="AGENS">
 <nom name="s1:addition"/>
 <prop name="sowohl"/>
 <diamond mode="NP1">
 <nom name="h1:nachname"/>
 <prop name="Hausser"/>
 </diamond>
 ...
</diamond>

	
append_subdiamond(subdiamond, mode=None)

	appends a subdiamond structure to an existing diamond structure, while
allowing to change the mode of the subdiamond

	Parameters

	mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the
diamond already has two subdiamonds (e.g. “00__AGENS” and
“01__PATIENS”) and add a third subdiamond with mode “TEMP”, its
identifier will be “02__TEMP”. if mode is None, the subdiamonds
mode will be left untouched.

	
change_mode(mode)

	changes the mode of a Diamond, which is sometimes needed when
embedding it into another Diamond or Sentence.

	
insert_subdiamond(index, subdiamond_to_insert, mode=None)

	insert a Diamond into this one before the index, while
allowing to change the mode of the subdiamond.

	Parameters

	mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the
diamond already has two subdiamonds (e.g. “00__AGENS” and
“01__PATIENS”) and we’ll insert a third subdiamond at index ‘1’
with mode “TEMP”, its identifier will be “01__TEMP”, while the
remaining two subdiamond identifiers will will be changed
accordingly, e.g. “00__AGENS” and “02__PATIENS”.
if mode is None, the subdiamonds mode will be left untouched.

	
prepend_subdiamond(subdiamond_to_prepend, mode=None)

	prepends a subdiamond structure to an existing diamond structure, while
allowing to change the mode of the subdiamond

	Parameters

	mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the
diamond already has two subdiamonds (e.g. “00__AGENS” and
“01__PATIENS”) and we’ll prepend a third subdiamond with mode
“TEMP”, its identifier will be “00__TEMP”, while the remaining two
subdiamond identifiers will will be incremented by 1, e.g.
“01__AGENS” and “02__PATIENS”. if mode is None, the subdiamonds
mode will be left untouched.

	
class pypolibox.hlds.HLDSReader(hlds, input_format='file')

	represents a list of sentences (as NLTK feature structures) parsed from
an HLDS XML testbed file.

	
parse_sentence(sentence, single_sent=True)

	

	
parse_sentences(tree)

	Parses all sentences (represented as HLDS XML structures)
into feature structures. These structures are saved as a list of
``Sentence``s in self.sentences.

If there’s only one sentence in a file, it’s root element is <xml>.
If there’s more than one, they are each <xml> sentence “roots” is
wrapped in an <item>…</item> (and <regression> becomes the root
tag of the document).

	Parameters

	tree (etree._ElementTree) – an etree tree element

	
class pypolibox.hlds.Sentence(features=None, **morefeatures)

	Bases: nltk.featstruct.FeatDict

represents an HLDS sentence as an NLTK feature structure.

	
create_sentence(sent_str, expected_parses, root_nom, root_prop, diamonds)

	wraps all ``Diamond``s that were already constructed by
HLDSReader.parse_sentences() plus some meta data (root verb etc.)
into a NLTK feature structure that represents a complete sentence.

	Parameters

	
	sent_str (str) – the text that should be generated

	expected_parses (int) – the expected number of parses

	root_prop (str) – the root element of that text (in case we’re

actually generating a sentence: the main verb)

	Parameters

	
	root_nom (str) – the root (element/verb) category, e.g. “b1:handlung”

	diamonds (list of ``Diamond``s) – a list of the diamonds that are contained in the

sentence

	
pypolibox.hlds.add_mode_suffix(diamond, mode='N')

	

	
pypolibox.hlds.add_nom_prefixes(diamond)

	Adds a prefix/index to the name attribute of every <nom> tag of a
Diamond or Sentence structure. Without this, ccg-realize will
only produce gibberish.

Every <nom> tag has a ‘name’ attribute, which contains a category/type-like
description of the corresponding <prop> tag’s name attribute, e.g.:

<diamond mode="PRÄP">
 <nom name="v1:zugehörigkeit"/>
 <prop name="von"/>
</diamond>

Here ‘zugehörigkeit’ is the name of a category that the preposition
‘von’ belongs to. usually, the nom prefix is the first character of the
prop name attribute with an added index. index iteration is done by a
depth-first walk through all diamonds contained in the given feature
structure. In this example ‘v1:zugehörigkeit’ means, that “von” is the
first diamond in the structure that starts with ‘v’ and belongs to
the category ‘zugehörigkeit’.

	
pypolibox.hlds.convert_diamond_xml2fs(etree)

	transforms a HLDS XML <diamond>…</diamond> structure
(that was parsed into an etree element) into an NLTK feature structure.

	Parameters

	etree_or_tuple (etree._Element) – a diamond etree element

	Return type

	Diamond

	
pypolibox.hlds.create_diamond(mode, nom, prop, nested_diamonds_list)

	creates an HLDS feature structure from scratch (in contrast to
convert_diamond_xml2fs, which converts an HLDS XML structure into
its corresponding feature structure representation)

NOTE: I’d like to simply put this into __init__, but I don’t know how
to subclass FeatDict properly. FeatDict.__new__ complains about
Diamond.__init__(self, mode, nom, prop, nested_diamonds_list) having
too many arguments.

	
pypolibox.hlds.create_hlds_file(sent_or_sent_list, mode='test', output='etree')

	this function transforms ``Sentence``s into a a valid HLDS XML testbed file

	Parameters

	
	sent_or_sent_list (Sentence or list of ``Sentence``s) – a Sentence or a list of ``Sentence``s

	mode (str) – “test”, if the sentence will be part of a (regression)

testbed file (ccg-test). “realize”, if the sentence will be put in a
file on its own (ccg-realize).

	Parameters

	output (str) – “etree” (etree element) or “xml” (formatted, valid xml

document as a string)

	Return type

	str

	
pypolibox.hlds.diamond2sentence(diamond)

	Converts a Diamond feature structure into a Sentence feature structure.
This becomes necessary whenever we want to realize a short utterance, e.g.
“die Autoren” or “die Themen Syntax und Pragmatik”.

Note: OpenCCG does not really distinguish between a sentence and smaller
units of meaning. It simply assigns the <sentence> tag to every HLDS
structure it realizes, whereas each substructure of this “sentence” (no
matter how complex) is labelled as a <diamond>.

	Return type

	Sentence

	
pypolibox.hlds.etreeprint(element, debug=True, raw=False)

	pretty print function for etree trees or elements

	Parameters

	debug – if True: not only return the XML string, but also print it to

stdout. if False: only return the XML string

	Parameters

	raw – if True: just transform the etree (element) into a string,

don’t add or prettify anything. if False: add an XML declaration and use
pretty print to make the output more readable for humans.

	
pypolibox.hlds.featstruct2avm(featstruct, mode='non-recursive')

	converts an NLTK feature structure into an attribute-value matrix
that can be printed with LaTeX’s avm environment.

	Return type

	str

	
pypolibox.hlds.hlds2xml(featstruct)

	debug function that returns the string representation of a feature
structure (Diamond or Sentence) and its HLDS XML equivalent.

	Return type

	str

	
pypolibox.hlds.last_diamond_index(featstruct)

	Returns the highest index currently used withing a given Diamond or
Sentence. E.g., if this structure contains three diamonds
(“00__ART”, “01__NUM” and “02__TEMP”), the return value will be 2. The
return value is -1, if the feature structure doesn’t contain any
``Diamond``s.

	Return type

	int

	
pypolibox.hlds.main()

	parse command line args and do the conversions

	
pypolibox.hlds.remove_nom_prefixes(diamond)

	

	
pypolibox.hlds.test_conversion()

	tests HLDS XML <-> NLTK feature structures conversions. converts an
HLDS XML testbed file into a list of sentences in NLTK feature
structure. picks one of these sentences randomly and converts it back
to HLDS XML. prints boths versions of this sentence. returns an
HLDSReader instance (containing a list of ``Sentence``s in NLTK feature
structure notation) and a HLDS XML testbed file (as a string) created
from those feature structures.

	Return type

	tuple of (HLDSReader, str)

	Returns

	a tuple containing an HLDSReader instance and a string

representation of an HLDS XML testbed file

lexicalization Module

lexicalize_messageblocks Module

messages Module

The messages module contains the Message class and related classes.

Message``s contain propositions about books. The text planner applies
``Rule``s to these ``Message``s to form ``ConstituentSet``s. ``Rule``s will
also be applied to ``ConstituentSet``s, ultimately forming one ``TextPlan
that contains all the information to be realized.

	
class pypolibox.messages.AllMessages(allpropositions)

	represents all Messages generated from AllPropositions about all Books()
that were returned by a query

	
class pypolibox.messages.Message(msgType=None)

	Bases: nltk.featstruct.FeatDict

A Message combines and stores knowledge about an object (here: books)
in a logical structure. Messages are constructed
during content selection (taking the user’s requirements, querying a
database and processing its results), which precedes text planning.

Each Message has a msgType which describes the kind of information
it includes. For example, the msgType ‘id’ specifies information that is
needed to distinguish a book from other books:

[*msgType* = 'id']
[authors = frozenset(['Roland Hausser'])]
[codeexamples = 0]
[language = 'German']
[pages = 572]
[proglang = frozenset([])]
[target = 0]
[title = 'Grundlagen der Computerlinguistik']
[year = 2000]

	
class pypolibox.messages.Messages(propositions)

	represents all Message instances generated from Propositions about a
Book.

	
add_identification_to_message(message)

	Adds special ‘reference_title’ and ‘reference_authors’ attributes to
messages other than the id_message.

In contrast to the id_message, other messages will not be used to
produce sentences that contain their content (i.e. no statement of the
‘author X wrote book Y in 1979’ generated from an ‘extra_message’ or a
‘lastbook_nomatch’ message). Nevertheless, they will need to make
reference to the title and the authors of the book (e.g. ‘Y is a
rather short book’). As an example, look at this ‘usermodel_match’
message:

[*msgType* = 'usermodel_match']
[*reference_authors* = frozenset(['Ulrich Schmitz'])]
[*reference_title* = 'Computerlinguistik. Eine Einführung']
[language = 'German']
[proglang = frozenset(['Lisp'])]

The message contains two bits of information (the language and
programming language used), which both have regular strings as keys.
The ‘referential’ keys on the other hand are nltk.Feature
instances and not strings. This distinction should be regarded as
a syntactic trick used to emphasize a semantic differce (READ: if you
have a better solution, please change it).

	
generate_extra_message(proposition_dict)

	generates a Message from an ‘extra’ Proposition. Extra
propositions only exist if a book is remarkably new / old or very
short / long.

	
generate_lastbook_nomatch_message(proposition_dict)

	generates a Message from a ‘lastbook_nomatch’ Proposition. A
lastbook_nomatch propositions states which differences exist between
two books.

	
generate_message(proposition_type)

	generates a Message from a ‘simple’ Proposition. Simple
propositions are those kinds of propostions that only give information
about one item (i.e. describe one book) but don’t compare two items
(e.g. book A is 12 years older than book B).

propositions Module

The propositions module evaluates the facts generated by the
pypolibox.facts module and stores its results as nested dictionaries.

	
class pypolibox.propositions.AllPropositions(allfacts)

	contains propositions about ALL the books that were listed in a query result

	
class pypolibox.propositions.Propositions(facts)

	represents propositions (positive/negative/neutral ratings) of a single book. Propositions() are generated from Facts() about a Book().

pypolibox Module

The pypolibox module is the ‘main’ module of the pypolibox package. It’s the
module you’d usually call from the command line or load into your Python
interpreter. It just imports all the important modules and runs some demo
code in case it is run from the command line without any arguments.

	
pypolibox.pypolibox.check_and_realize_textplan(openccg, textplan, lexicalize_message_block, phrase2sentence)

	realizes a text plan and warns about message blocks that cannot be
realized due to current restrictions in the OpenCC grammar.

	Parameters

	
	openccg (OpenCCG) – a running OpenCCG instance

	textplan (TextPlan) – text plan to be realized

	
pypolibox.pypolibox.generate_textplans(query)

	generates all text plans for a database query

	
pypolibox.pypolibox.initialize_openccg(lang='de')

	starts OpenCCG’s tccg realizer as a server in the background (ca. 20s).

	
pypolibox.pypolibox.main()

	This is the pypolibox commandline interface. It allows you to query
the database and generate book recommendatins, which will either be
handed to OpenCCG for generating sentences or printed to stdout in
an XML format representing the text plans.

	
pypolibox.pypolibox.test()

	test and realize all text plans for all test queries

realization Module

The realization module shall take HLDS XML structures, realize them with
the OpenCCG surface realizer and parse its output string.

	
class pypolibox.realization.OpenCCG(grammar_dir='/home/docs/checkouts/readthedocs.org/user_builds/pypolibox/envs/latest/local/lib/python2.7/site-packages/pypolibox-1.0.2-py2.7.egg/pypolibox/grammar', lang='de')

	Bases: object

command-line interaction with OpenCCG’s tccg parser/generator, which
can either be run as a JSON-RPC server or simply imported as a Python
module.

	
parse(text, verbose=True, raw_output=True)

	This is the core interaction with the parser.

It returns a Python data-structure, while the parse()
function returns a JSON object

	Returns

	if raw_output=True, the raw response string from the server

will be returned. otherwise, a list of dictionaries will be returned
(one for each input sentence).
:rtype: str OR list of ``dict``s

	
realize(featstruct, raw_output=True)

	converts a Diamond or Sentence feature structure into HLDS-XML,
write it to a temporary file, realizes this file with tccg and
parses the output it returns.

	
realize_hlds(hlds_xml_filename)

	

	
terminate()

	

	
pypolibox.realization.parse_tccg_generator_output(tccg_output)

	parses the output string returned from tccg’s interactive generator
shell.

rules Module

The rules module contains rules, which are used by the text planner to
combine messages into constituent sets and ultimately form one TextPlan.

	
class pypolibox.rules.ConstituentSet(relType=None, nucleus=None, satellite=None)

	Bases: nltk.featstruct.FeatDict

ConstituentSet is the contstuction built up by applying Rules to a
set of ConstituentSet``s and ``Message``s. Each ``ConstituentSet is of a
specific relType, and has two constituents, one which is designated the
nucleus and one which is designated aux. These ``ConstituentSet``s can
then be combined with other ``ConstituentSet``s or ``Message``s.

ConstituentSet is based on nltk.featstruct.FeatDict.

	
class pypolibox.rules.Rule(name, ruleType, nucleus, satellite, conditions, heuristic)

	Bases: object

Rules are the elements which specify relationships which hold between
elements of the document. These elements can be ``Message``s or
``ConstituentSet``s.

Each Rule specifies a list of inputs, which are is a minimal
specification of a Message or ConstituentSet. To be a valid input to
this Rule, a given Message or ConstituentSet must subsume one of the
specified ``input``s.

Each Rule can also specify a set of conditions which must be met in
order for the Rule to hold between the inputs.

Each Rule specifies a heuristic, which will be evaluated to provide a
score by which to rank the order in which rules should be applied.

Each Rule specifies which of the inputs will be the nucleus and which
will be the aux of the output ConstituentSet.

	
find_message_candidates(messages, message_prototype)

	takes a list of messages and returns only those with the right
message type (as specified in Rule.inputs)

	Parameters

	messages (list of ``Message``s) – a list of Message objects, each containing one

message about a book

	Parameters

	message_prototype – a tuple consisting of a message name and a

Message or ConstituentSet
:type message_prototype: tuple of (string, Message or
ConstituentSet)

	Return type

	list of tuple``s of (string, ``Message)

	Returns

	a list containing all (name, message) tuples which are

subsumed by the input message type (self.nucleus or self.satellite).
If a rule should only be applied to UserModelMatch and UserModelNoMatch
messages, the return value contains a list of messages with these
types.

	
get_conditions(group)

	applies __name_eval to all conditions a Rule has, i.e. checks if a
group meets all conditions

ConstituentSet)
:param group: a list of message tuples of the form
(message name, message)

	Return type

	list of bool

	Returns

	a list of truth values, each of which tells if a group met

all conditions specified in self.conditions

	
get_options(messages)

	this is the main method used for document planning

From the list of Messages, get_options selects all possible ways
the Rule could be applied.

The planner can then select with the textplan.__bottom_up_search
function one of these possible applications of the Rule to use.

non_empty_message_combinations is a list of combinations, where each
combination is a (nucleus, satellite)-tuple. both the nucleus and the
satellite each consist of a (name, message) tuple.

The method returns an empty list if get_options can’t find a way
to apply the Rule.

	Parameters

	messages (list of Message objects) – a list of Message objects, each containing one

message about a book

	Return type

	empty list or a list containing one tuple of (int,

ConstituentSet, list), where list consists of Message
or ConstituentSet objects
:return: a list containing one 3-tuple (score, ConstituentSet,
inputs) where:

	score is the evaluated heuristic score for this application of

the Rule
- ConstituentSet is the new ConstituentSet instance returned by
the application of the Rule
- inputs is the list of inputs (Message``s or ``ConstituentSets
used in this application of the rule

	
get_satisfactory_groups(groups)

	

Message or ConstituentSet)
:param groups: a list of group elements. each group contains a list
which contains one or more message tuples of the form
(message name, message)

	Return type

	list of list’s of tuple’s of (str, Message

or ConstituentSet)
:return: a list of group elements. contains only those groups which
meet all the conditions specified in self.conditions

	
class pypolibox.rules.Rules

	creates Rule() instances

Each rule of the form Rule(ruleType, inputs, conditions, nucleus, aux,
heuristic) is generated by its own method. Important note: these methods
have to adhere to a naming convention, i.e. begin with ‘genrule_’;
otherwise, self.__init__ will fail!

	
genrule_book_differences()

	Contrast({id, id_extra_sequence}, lastbook_nomatch)

Meaning: id/id_extra_sequence. In contrast to book X, this book is in
German, targets advanced users and …
Condition: There are differences between the two books

	
genrule_book_similarities()

	Elaboration(id_usermodelmatch, lastbook_match)

Meaning: ‘id_usermodelmatch’ mentions that the books matches ALL
requirements. In addition, the book shares many features with its
predecessor.
Condition: There are both differences and commonalities (>=50%) between
the two books.

	
genrule_compare_eval()

	Sequence(concession_books, {pos_eval, neg_eval, usermodel_match,
usermodel_nomatch})

Meaning: ‘concession_books’ describes common and diverging features of
the books. ‘pos_eval/neg_eval/usermodel_match/usermodel_nomatch’
explains how many user requirements they meet

	
genrule_concession_book_differences_usermodelmatch()

	Concession(book_differences, usermodel_match)

Meaning: ‘book_differences’ explains the differences between both books.
Nevertheless, this book meets ALL your requirements …
Condition: All user requirements are met.

	
genrule_concession_books()

	Concession(book_differences, lastbook_match)

Meaning: After ‘book_differences’ explains the differences between both
books, their common features are explained.

	
genrule_contrast_books_posneg_eval()

	Sequence(book_differences, {pos_eval, neg_eval})

Meaning: book_differences mentions the differences between the books,
pos_eval/neg_eval explains how many user requirements they meet
Conditions: matches some of the requirements

	
genrule_id_extra_sequence()

	Sequence(id_complete, extra), if ‘extra’ exists:

adds an additional “sentence” about extra facts after the id messages

	
genrule_id_usermodelmatch()

	Elaboration({id, id_extra_sequence}, usermodel_match), if there’s no
usermodel_nomatch

Meaning: This book fulfills ALL your requirments. It was written in …,
contains these features … and … etc

	
genrule_neg_eval()

	Concession(usermodel_nomatch, usermodel_match)

Meaning: Although this book fulfills some of your requirements, it
doesn’t match most of them. Therefore, this book might not be the best
choice.

	
genrule_no_similarities_concession()

	Concession({id, id_extra_sequence}, lastbook_nomatch)

Meaning: Book X has these features BUT share none of them with its
predecessor.
Condition: There is a predecessor to this book, but they don’t share
ANY features.

	
genrule_pos_eval()

	Concession(usermodel_match, usermodel_nomatch)

Meaning: Book matches many (>= 50%) of the requirements, but not all of
them

	
genrule_single_book_complete()

	Sequence({id, id_extra_sequence}, {pos_eval, neg_eval})

Meaning: The nucleus mentions all the (remaining) facts (that aren’t
mentioned in the evaluation), while the satellite evaluates the book
(in terms of usermodel matches)

	
genrule_single_book_complete_usermodelmatch()

	Sequence({id, id_extra_sequence}, usermodel_match)

Meaning: The satellite states that the book matches ALL the user’s
requirements. The nucleus mentions the remaining facts about the book.
Condition: there’s no preceding book and there are only usermodel
matches.

	
genrule_single_book_complete_usermodelnomatch()

	Sequence({id, id_extra_sequence}, usermodel_nomatch)

Meaning: The satellite states that the book matches NONE of the user’s
requirements. The nucleus mentions the remaining facts about the book.
Condition: there’s no preceding book and there are no usermodel
matches.

textplan Module

The textplan module is based on Nicholas FitzGerald’s py_docplanner``[1],
in particular on his idea to represent RST trees as attribute value matrices
by using the ``nltk.featstruct data structure.

textplan converts Proposition instances into Message``s (using
attribute value notation). Via a set of ``Rule``s, these messages are combined
into ``ConstituentSet``s. Rules are applied bottom-up, via a recursive
best-first search (cf. ``__bottom_up_search).

Not only messages, but also constituent sets can be combined
via rules. If all messages present can be combined into one large
ConstituentSet, this constituent set is called a TextPlan. A
TextPlan represents a complete text plan in form of an attribute value
matrix.

[1] Fitzgerald, Nicholas (2009). Open-Source Implementation of Document
Structuring Algorithm for NLTK.

	
class pypolibox.textplan.TextPlan(book_score=None, dtype='TextPlan', text=None, children=None)

	Bases: nltk.featstruct.FeatDict

TextPlan is the output of Document Planning. A TextPlan consists of an
optional title and text, and a child ConstituentSet.

	TODO: append __str__ method: should describe verbally if a TP is

	describing one book or comparing two books

	
class pypolibox.textplan.TextPlans(allmessages, debug=False)

	Bases: object

generates all TextPlan``s for an ``AllMessages instance, i.e. one
DocumentPlan for each book that is returned as a result of the user’s
database query

	
pypolibox.textplan.generate_textplan(messages, rules=[<pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>, <pypolibox.rules.Rule object>], book_score=None, dtype='TextPlan', text='')

	The main method implementing the Bottom-Up document structuring algorithm
from “Building Natural Language Generation Systems” figure 4.17, p. 108.

The method takes a list of Message``s and a set of ``Rule``s and creates a
document plan by repeatedly applying the highest-scoring Rule-application
(according to the Rule's heuristic score) until a full tree is created.
This is returned as a ``TextPlan with the tree set as children.

If no plan is reached using bottom-up, None is returned.

	Parameters

	messages – a list of ``Message``s which have been selected during

content selection for inclusion in the TextPlan
:type messages: list of Message``s
:param rules: a list of ``Rule``s specifying relationships which can hold
between the messages
:type rules: list of ``Rule``s
:param dtype: an optional type for the document
:type dtype: string
:param text: an optional text string describing the document
:type text: string
:return: a document plan. if no plan could be created: return None
:rtype: ``TextPlan or NoneType

	
pypolibox.textplan.linearize_textplan(textplan)

	takes a text plan (an RST tree represented as a NLTK.featstruct data
structure) and returns an ordered list of ``Message``s for surface
generation.

	Return type

	list of ``Message``s

	
pypolibox.textplan.test_textplan2xml_conversion()

	test text plan to XML conversion with all the text plans that were
generated for all test queries with debug.gen_all_textplans().

	
pypolibox.textplan.textplan2xml(textplan)

	converts one TextPlan into an XML structure representing it.

	Return type

	etree._ElementTree

	
pypolibox.textplan.textplans2xml(textplans)

	converts several ``TextPlan``s into an XML structure representing
these text plans.

	Return type

	etree._ElementTree

util Module

The util module contains a number of ‘bread and butter’ functions that are
needed to run pypolibox, but are not particularly interesting (e.g. format
converters, existence checks etc.).

There shouldn’t be any code in this module that require loading other
modules from pypolibox!

	
pypolibox.util.ensure_unicode(string_or_int)

	ensures that a string does use unicode instead of UTF8.
converts integer input to a unicode string.

	
pypolibox.util.ensure_utf8(string_or_int)

	ensures that a string does not use unicode but UTF8.
converts integer input to a string.

	
pypolibox.util.exists(thing, namespace)

	checks if a variable/object/instance exists in the given namespace

	Return type

	bool

	
pypolibox.util.flatten(nested_list)

	flattens a list, where each list element is itself a list

	Parameters

	nested_list (list) – the nested list

	Returns

	flattened list

	
pypolibox.util.freeze_all_messages(message_list)

	makes all messages (``FeatDict``s) immutable, which is necessary for turning
them into sets

	
pypolibox.util.msgs_instance_to_list_of_msgs(messages_instance)

	converts a Messages instance into a list of Message instances

	
pypolibox.util.sql_array_to_list(sql_array)

	converts SQL string “arrays” into a list of strings

Our book database uses ‘[‘ and ‘]’ to handle attributes w/ more than one
value: e.g. authors = ‘[Noam Chomsky][Alan Touring]’. This function
turns those multi-value strings into a set with separate values.

	Parameters

	sql_array (str) – a string from the database that represents one or

more items delimited by ‘[‘ and ‘]’, e.g. “[Noam Chomsky]” or “[Noam
Chomsky][Alan Touring]”

	Return type

	list of str

	Returns

	a list of strings, where each string represents one item from

the database, e.g. [“Noam Chomsky”, “Alan Touring”]

	
pypolibox.util.sql_array_to_set(sql_array)

	converts SQL string “arrays” into a set of strings

our book database uses ‘[‘ and ‘]’ to handle attributes w/ more than one
value: e.g. authors = ‘[Noam Chomsky][Alan Touring]’

this function turns those multi-value strings into a set with separate
values

	Parameters

	sql_array (str) – a string from the database that represents one or

more items delimited by ‘[‘ and ‘]’, e.g. “[Noam Chomsky]” or “[Noam
Chomsky][Alan Touring]”

	Return type

	set of str

	Returns

	a set of strings, where each string represents one item from

the database, e.g. [“Noam Chomsky”, “Alan Touring”]

	
pypolibox.util.write_to_file(str_or_obj, file_path)

	takes a string and writes it to a file or takes any other object, pickles
it and writes it to a file

News

1.0.2 (2014-05-17)

Release data: 17-May-2014

	added Windows-specific requirements to setup.py (winpexpect vs. pexpect)

	README now covers installation prerequisites

1.0.1 (2014-05-13)

Release date: 13-May-2014

	installation via pip or python setup.py install now adds two programs
to your path: pypolibox and hlds-converter

	added new output formats (--output-format parameter):
textplan featstructs, HLDS XML

	documentation is now hosted at readthedocs.org [http://pypolibox.readthedocs.org]

	converted documentation from epydoc to sphinx

	added make file, license file

1.0.0 (2014-30-04)

Release date: 30-Apr-2014

	pypolibox is now licensed under GPLv3

	OpenCCG grammar fragment (CC-BY-NC-SA 4.0 licensed) now shipped with code

	first release via PyPI

	got rid of configuration file

	fixed some errors in the documentation

To-do list

	Theory/Structure: Rewrite rules for the textplanner. RST relations should
combine messages, not message blocks. (A message should be something that
can be expressed in a single sentence.)

	Coverage: Update the lexicalization module once the grammar
fragment is “completed”.

	Consistency: Make keys unique. Instead of three different “recency” keys,
there should be a regular one, an “extra_recency” key (‘This book is
particularly recent/old’) and a “relative_recency” key (‘This book is 20
years older than the other one’).

	Consistency: In “extra recency” messages, “values” are called
“descriptions”.

	Unicode: If NLTK becomes available for Python 3, switch to that branch.
Otherwise, evaluate if porting nltk.featstruct to Python 3 is feasible
(e.g. with the help of python2to3).

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypolibox	

 	
 	
 pypolibox.__init__	

 	
 	
 pypolibox.database	

 	
 	
 pypolibox.debug	

 	
 	
 pypolibox.facts	

 	
 	
 pypolibox.hlds	

 	
 	
 pypolibox.messages	

 	
 	
 pypolibox.propositions	

 	
 	
 pypolibox.pypolibox	

 	
 	
 pypolibox.realization	

 	
 	
 pypolibox.rules	

 	
 	
 pypolibox.textplan	

 	
 	
 pypolibox.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	abbreviate_textplan() (in module pypolibox.debug)

 	add_identification_to_message() (pypolibox.messages.Messages method)

 	add_mode_suffix() (in module pypolibox.hlds)

 	add_nom_prefixes() (in module pypolibox.hlds)

 	
 	AllFacts (class in pypolibox.facts)

 	AllMessages (class in pypolibox.messages)

 	AllPropositions (class in pypolibox.propositions)

 	append_subdiamond() (pypolibox.hlds.Diamond method)

 	apply_rule() (in module pypolibox.debug)

B

 	
 	Book (class in pypolibox.database)

 	
 	Books (class in pypolibox.database)

C

 	
 	change_mode() (pypolibox.hlds.Diamond method)

 	check_and_realize_textplan() (in module pypolibox.pypolibox)

 	compare_hlds_variants() (in module pypolibox.debug)

 	compare_textplans() (in module pypolibox.debug)

 	
 	ConstituentSet (class in pypolibox.rules)

 	convert_diamond_xml2fs() (in module pypolibox.hlds)

 	create_diamond() (in module pypolibox.hlds)

 	create_hlds_file() (in module pypolibox.hlds)

 	create_sentence() (pypolibox.hlds.Sentence method)

D

 	
 	Diamond (class in pypolibox.hlds)

 	
 	diamond2sentence() (in module pypolibox.hlds)

E

 	
 	ensure_unicode() (in module pypolibox.util)

 	ensure_utf8() (in module pypolibox.util)

 	
 	enumprint() (in module pypolibox.debug)

 	etreeprint() (in module pypolibox.hlds)

 	exists() (in module pypolibox.util)

F

 	
 	Facts (class in pypolibox.facts)

 	featstruct2avm() (in module pypolibox.hlds)

 	find_applicable_rules() (in module pypolibox.debug)

 	
 	find_message_candidates() (pypolibox.rules.Rule method)

 	findrule() (in module pypolibox.debug)

 	flatten() (in module pypolibox.util)

 	freeze_all_messages() (in module pypolibox.util)

G

 	
 	gen_all_messages_of_type() (in module pypolibox.debug)

 	gen_all_textplans() (in module pypolibox.debug)

 	gen_textplans() (in module pypolibox.debug)

 	genallmessages() (in module pypolibox.debug)

 	generate_extra_facts() (pypolibox.facts.Facts method)

 	generate_extra_message() (pypolibox.messages.Messages method)

 	generate_id_facts() (pypolibox.facts.Facts method)

 	generate_lastbook_facts() (pypolibox.facts.Facts method)

 	generate_lastbook_nomatch_message() (pypolibox.messages.Messages method)

 	generate_message() (pypolibox.messages.Messages method)

 	generate_query_facts() (pypolibox.facts.Facts method)

 	generate_textplan() (in module pypolibox.textplan)

 	generate_textplans() (in module pypolibox.pypolibox)

 	genmessages() (in module pypolibox.debug)

 	genprops() (in module pypolibox.debug)

 	genrule_book_differences() (pypolibox.rules.Rules method)

 	genrule_book_similarities() (pypolibox.rules.Rules method)

 	genrule_compare_eval() (pypolibox.rules.Rules method)

 	
 	genrule_concession_book_differences_usermodelmatch() (pypolibox.rules.Rules method)

 	genrule_concession_books() (pypolibox.rules.Rules method)

 	genrule_contrast_books_posneg_eval() (pypolibox.rules.Rules method)

 	genrule_id_extra_sequence() (pypolibox.rules.Rules method)

 	genrule_id_usermodelmatch() (pypolibox.rules.Rules method)

 	genrule_neg_eval() (pypolibox.rules.Rules method)

 	genrule_no_similarities_concession() (pypolibox.rules.Rules method)

 	genrule_pos_eval() (pypolibox.rules.Rules method)

 	genrule_single_book_complete() (pypolibox.rules.Rules method)

 	genrule_single_book_complete_usermodelmatch() (pypolibox.rules.Rules method)

 	genrule_single_book_complete_usermodelnomatch() (pypolibox.rules.Rules method)

 	get_book_ranks() (pypolibox.database.Books method)

 	get_column() (in module pypolibox.database)

 	get_conditions() (pypolibox.rules.Rule method)

 	get_number_of_book_matches() (pypolibox.database.Book method)

 	get_number_of_possible_matches() (pypolibox.database.Results method)

 	get_options() (pypolibox.rules.Rule method)

 	get_satisfactory_groups() (pypolibox.rules.Rule method)

 	get_table_header() (pypolibox.database.Results method)

H

 	
 	hlds2xml() (in module pypolibox.hlds)

 	
 	HLDSReader (class in pypolibox.hlds)

I

 	
 	initialize_openccg() (in module pypolibox.pypolibox)

 	
 	insert_subdiamond() (pypolibox.hlds.Diamond method)

L

 	
 	last_diamond_index() (in module pypolibox.hlds)

 	
 	linearize_textplan() (in module pypolibox.textplan)

M

 	
 	main() (in module pypolibox.hlds)

 	(in module pypolibox.pypolibox)

 	Message (class in pypolibox.messages)

 	
 	Messages (class in pypolibox.messages)

 	msgs_instance_to_list_of_msgs() (in module pypolibox.util)

 	msgtypes() (in module pypolibox.debug)

O

 	
 	OpenCCG (class in pypolibox.realization)

P

 	
 	parse() (pypolibox.realization.OpenCCG method)

 	parse_sentence() (pypolibox.hlds.HLDSReader method)

 	parse_sentences() (pypolibox.hlds.HLDSReader method)

 	parse_tccg_generator_output() (in module pypolibox.realization)

 	prepend_subdiamond() (pypolibox.hlds.Diamond method)

 	printeach() (in module pypolibox.debug)

 	Propositions (class in pypolibox.propositions)

 	pypolibox.__init__ (module)

 	pypolibox.database (module)

 	
 	pypolibox.debug (module)

 	pypolibox.facts (module)

 	pypolibox.hlds (module)

 	pypolibox.messages (module)

 	pypolibox.propositions (module)

 	pypolibox.pypolibox (module)

 	pypolibox.realization (module)

 	pypolibox.rules (module)

 	pypolibox.textplan (module)

 	pypolibox.util (module)

Q

 	
 	Query (class in pypolibox.database)

R

 	
 	realize() (pypolibox.realization.OpenCCG method)

 	realize_hlds() (pypolibox.realization.OpenCCG method)

 	remove_nom_prefixes() (in module pypolibox.hlds)

 	
 	Results (class in pypolibox.database)

 	Rule (class in pypolibox.rules)

 	Rules (class in pypolibox.rules)

S

 	
 	Sentence (class in pypolibox.hlds)

 	
 	sql_array_to_list() (in module pypolibox.util)

 	sql_array_to_set() (in module pypolibox.util)

T

 	
 	terminate() (pypolibox.realization.OpenCCG method)

 	test() (in module pypolibox.pypolibox)

 	test_cli() (in module pypolibox.debug)

 	test_conversion() (in module pypolibox.hlds)

 	
 	test_textplan2xml_conversion() (in module pypolibox.textplan)

 	TextPlan (class in pypolibox.textplan)

 	textplan2xml() (in module pypolibox.textplan)

 	TextPlans (class in pypolibox.textplan)

 	textplans2xml() (in module pypolibox.textplan)

W

 	
 	write_to_file() (in module pypolibox.util)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pypolibox’s documentation!

 		
 pypolibox

 		
 Installation

 		
 Prerequisites

 		
 Install from PyPI

 		
 Install from source

 		
 Usage

 		
 Command line usage

 		
 Library usage

 		
 Documentation

 		
 Package Overview

 		
 Licence

 		
 Contributors

 		
 Acknowledgements

 		
 pypolibox

 		
 pypolibox Package

 		
 pypolibox Package

 		
 database Module

 		
 debug Module

 		
 facts Module

 		
 hlds Module

 		
 lexicalization Module

 		
 lexicalize_messageblocks Module

 		
 messages Module

 		
 propositions Module

 		
 pypolibox Module

 		
 realization Module

 		
 rules Module

 		
 textplan Module

 		
 util Module

 		
 News

 		
 1.0.2 (2014-05-17)

 		
 1.0.1 (2014-05-13)

 		
 1.0.0 (2014-30-04)

 		
 To-do list

_static/up.png

_static/up-pressed.png

