
pypolibox Documentation
Release 1.0.2

Arne Neumann

Jan 20, 2018

Contents

1 pypolibox 3
1.1 Installation . 3
1.2 Usage . 4
1.3 Documentation . 5
1.4 Package Overview . 5
1.5 Licence . 6
1.6 Contributors . 6
1.7 Acknowledgements . 6

2 pypolibox 7
2.1 pypolibox Package . 7

3 News 27
3.1 1.0.2 (2014-05-17) . 27
3.2 1.0.1 (2014-05-13) . 27
3.3 1.0.0 (2014-30-04) . 27

4 To-do list 29

5 Indices and tables 31

Python Module Index 33

i

ii

pypolibox Documentation, Release 1.0.2

Contents:

Contents 1

pypolibox Documentation, Release 1.0.2

2 Contents

CHAPTER 1

pypolibox

pypolibox is a database-to-text generation (NLG) software built on Python 2.7, NLTK and Nicholas FitzGerald’s
pydocplanner.

Using a database of technical books and some user input, pypolibox generates sentences descriptions. These descrip-
tions are then used by the OpenCCG surface realiser to generate written sentences in German.

1.1 Installation

1.1.1 Prerequisites

In order to generate sentences (instead of abstract sentence descriptions), you will need to install OpenCCG (tested
with version 0.9.5). Make sure that you can call tccg from the command line, e.g. by adding the openccg/bin
directory to your $PATH.

Under Linux, you’d have to add something like this to your .bashrc:

export PATH=/home/username/bin/openccg/bin:$PATH

export OPENCCG_HOME=/home/username/bin/openccg
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64

Under Windows, you’ll have to set the environment variables OPENCCG_HOME, JAVA_HOME and add the full path
of your openccg/bin directory to the PATH variable.

pywin32 also needs to be installed under Windows.

1.1.2 Install from PyPI

pip install pypolibox

3

https://pypi.python.org/pypi/pypolibox#downloads
https://pypi.python.org/pypi/pypolibox
http://openccg.sourceforge.net/
http://www.voidspace.org.uk/python/articles/command_line.shtml#environment-variables
http://sourceforge.net/projects/pywin32/

pypolibox Documentation, Release 1.0.2

Under Linux, you might have to prepend that command with sudo or execute it as root. Under Windows, you’ll need
to run this command in a console with administrator rights.

1.1.3 Install from source

You might also need superuser/admin rights for this (see above).

git clone https://github.com/arne-cl/pypolibox.git
cd pypolibox
python setup.py install

1.2 Usage

1.2.1 Command line usage

pypolibox can be used from the command line or from within a Python interpreter. To see all the available options,
enter:

pypolibox -h

To find books that are written in German and use the programming language Prolog, type:

pypolibox --language German --proglang Prolog

or, if you prefer short but cryptic commands:

pypolibox -l German -p Prolog

You can choose between several output formats using the -o or --output-format argument.

• openccg generates sentences using OpenCCG (default option)

• textplan-xml generates an XML representation of the textplans

• textplan-featstruct generates a feature structure representation (nltk.featstruct)

• hlds generates an HLDS XML representations of all the sentences.

In future versions, you will be able to choose between several output natural languages the -d or
--output-language argument (currently only German is supported).

The following example query will generate HLDS XML snippets describing books about Prolog written in German:

pypolibox --language German --proglang Prolog --output-format hlds

Further usage examples can be found in the pypolibox.database.Query class documentation.

1.2.2 Library usage

If you’d like to access pypolibox from within a Python interpreter, you can simply use the same arguments. Instead
of a string like -l German -p Prolog, you will have to provide your arguments as a list of strings:

Query(["-l", "German", "-p", "Prolog"])

4 Chapter 1. pypolibox

http://superuser.com/a/88504

pypolibox Documentation, Release 1.0.2

This query would be equivalent to the command line queries above. pypolibox is built as a pipeline, where each
important step is represented by a class. Each of these classes function as the input of the next class in the pipeline,
e.g.:

query = Query(["-l", "German", "-p", "Prolog"])
Results(query)
Books(Results(query))
...
TextPlans(AllMessages(AllPropositions(AllFacts(Books(Results(query))))))

If you instanciate a Query with your query arguments, you can use this Query instance as the input of a Results
instance (which contains the data that the database provided for your query), which in turn can be used as the input of
a Books instance etc.

Of course, you wouldn’t want to chain all those classes just to retrieve textplans. To do so, simply use one of the
functions provided in the debug module, either by running the debug.py file in the interpreter or by importing it:

import debug
debug.gen_textplans(["-l", "German", "-p", "Prolog"])

This function call would return the same results as the aforementioned command line calls. For further testing, try
debug.testqueries and debug.error_testqueries, which basically are lists of predefined valid and
invalid query arguments and which can be used to query the database (and see how errors are handled).

1.3 Documentation

The documentation is available online, but you can always get an up-to-date local copy using Sphinx.

You can generate an HTML or PDF version by running these commands in pypolibox’s docs directory:

make latexpdf

to produce a PDF (docs/_build/latex/pypolibox.pdf) and

make html

to produce a set of HTML files (docs/_build/html/index.html).

1.4 Package Overview

The pypolibox package contains the following modules:

• The pypolibox module is the main module, which is invoked from the command line.

• The database module handles the user input, queries the database and returns the results.

• facts converts those results into attribute value matrices.

• The propositions module evaluates those facts (positive, negative, neutral).

• The textplan module takes those propositions and turns them into messages. In contrast to propositions,
messages do not contain duplicates and add comparative information. Rules will be used to combine those
message into constituent sets and ultimately into one text plan. The textplan module also allows exporting
those text plans in XML format.

1.3. Documentation 5

http://pypolibox.readthedocs.org
http://sphinx-doc.org/

pypolibox Documentation, Release 1.0.2

• The rules module contains the rules used by be the textplan module to combine messages into constituent
sets and textplans, respectively.

• The messages module generates messages from propositions, which will be used by the textplan module.

• The lexicalize_messageblocks is the “main” module of the lexicalization. For each message block
in a textplan, it generates one or more possible lexicalizations which are then realized by the realization
module.

• The lexicalizationmodule generates lexicalizations (in HLDS-XML format) for each message, which are
used by the lexicalize_messageblocks module to form lexicalizations of complete message blocks.

• A note on terminology: A message block in pypolibox is basically an instance of the Message class, e.g
an “id” message block. This “id” message block in turn consists of several messages, e.g. an “authors” message
and a “title” message.

• The realization module takes a lexicalized phrase or sentence (in HLDS-XML format) and converts it into
a surface realization (with the help of OpenCCGs tccg executable).

• The hlds module allows to convert textplans from a nltk.featstruct-based format to HLDS-XML and
vice versa. In addition, the module can produce attribute-value matrices of these textplans as LaTeX/PDF files.

1.5 Licence

The code is licensed under GPL Version 3. The grammar fragment is licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

1.6 Contributors

Arne Neumann (original author), Pablo Duboue

1.7 Acknowledgements

This software reimplements parts of the Java-based JPolibox text-generation software written by Alexandra Strelakova,
Felix Dombek, Mathias Langer and Till Kolter. pypolibox also includes a heavily modified version of Nicholas
FitzGerald’s pydocplanner, which he released under a Creative Commons license (not specified further). The German
OpenCCG grammar fragment that comes with pypolibox was written by Martin Oltmann.

6 Chapter 1. pypolibox

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

CHAPTER 2

pypolibox

2.1 pypolibox Package

2.1.1 pypolibox Package

2.1.2 database Module

The database module is responsible for parsing the user’s requirements (both from command line options, as well
as interactively from the Python interpreter), transforming these requirements into an SQL query, querying the sqlite
database and returning the results.

class pypolibox.database.Book(db_item, db_columns, query_args)
a Book instance represents one book from a database query

get_number_of_book_matches()
calculates the number of query parameters that a book matches

Return type int

class pypolibox.database.Books(results)
a Books instance stores all books that were found by a database query as a list of Book instances in self.
books

get_book_ranks(possible_matches)
ranks ‘OR query’ results according to the number of query parameters they match.

Parameters possible_matches (int) – the number of (meaningful) parameters of the
query.

Returns book_ranks – a list of tuples, where each tuple consists of the score of a book and its
index in self.books

Return type list of (float, int) tuples

class pypolibox.database.Query(argv)
a Query instance represents one user query to the database

7

pypolibox Documentation, Release 1.0.2

Queries can be made from the command line, as well as from the Python interpreter. From the command
line, queries can be made using either abbreviated or long parameters. The following examples both query the
database for books that contain code examples and deal with both semantics and parsing:

python pypolibox.py -k semantics, parsing -c 1
python pypolibox.py --keywords semantics, parsing --codeexamples 1

When calling pypolibox.py from within the Python interpreter, the same query can be made using the
following command:

Query(["-k", "semantics", "parsing", "-c", "1"])

If you print the Query instance (by using the print command), it will return the SQL query that was con-
structed from the user input:

SELECT * FROM books WHERE keywords like '%semantics%' AND keywords
like '%parsing%' AND examples = 1

TODO: This module talks directly to the database. To make it easier to adapt pypolibox to a different domain,
an SQL abstraction layer (e.g. SQL Alchemy) should be used.

class pypolibox.database.Results(query)
A Results instance sends queries to the database, retrieves and stores the results.

get_number_of_possible_matches()
Counts the number of query paramters that could be matched by books from the results set. The actual
scoring of books takes place in Books.get_book_ranks().

For example, if a query contains the parameters:

keywords = pragmatics, keywords = semantics, language = German

it means that a book could possible match 3 parameters (possible_matches = 3).

Returns the number of possible matches

Return type int

get_table_header(table_name)
get the column names (e.g. title, year, authors) and their index from the books table of the db and return
them as a dictionary.

Parameters table_name (str) – name of a database table, e.g. ‘books’

Returns a dictionary, which contains the names of the table columns

as keys and their index as values :rtype: dict, with str keys and int values

pypolibox.database.get_column(column_name)
debugging: primitive db query that returns all the values stored in a column, e.g. get_column(“title”) will return
all book titles stored in the database

Return type list of str

2.1.3 debug Module

The debug module contains a number of functions, which can be used to test the behaviour of pypolibox’ classes,
test its error handling or simply provides short cuts to generate frequently needed data.

8 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

pypolibox.debug.abbreviate_textplan(textplan)
recursive helper function that prints only the skeletton of a textplan (message types and RST relations but not
the actual message content)

Parameters textplan (TextPlan or ConstituentSet or Message) – a text plan, a con-
stituent set or a message

Returns a message (without the attribute value pairs stored in it)

Return type Message

pypolibox.debug.apply_rule(messages, rule_name)
debugging: take a rule and apply it to your list of messages.

the resulting ConstituentSet will be added to the list, while the messages involved in its construction will
be removed. repeat this step until you’ve found an erroneous/missing rule.

pypolibox.debug.compare_hlds_variants()
TODO: kill bugs

BUG1: sentence001-original-test contains 2(!) <item> sentences.

pypolibox.debug.compare_textplans()
helps to find out how many different text plan structures there are.

pypolibox.debug.enumprint(obj)
prints every item of an iterable on its own line, preceded by its index

pypolibox.debug.find_applicable_rules(messages)
debugging: find out which rules are directly (i.e. without forming ConstituentSets first) applicable to your
messages

pypolibox.debug.findrule(ruletype=”, attribute=”, value=”)
debugging: find rules that have a certain ruleType and some attribute-value pair

Example: findrule(“Concession”, “nucleus”, “usermodel_match”) finds rules of type ‘Concession’ where
rule.nucleus == ‘usermodel_match’.

pypolibox.debug.gen_all_messages_of_type(msg_type)
generate all messages for all books from all testqueries, but return only those which match the given message
type, e.g. ‘id’ or ‘extra’.

pypolibox.debug.gen_all_textplans()
generates all text plans for each query in the predefined list of test queries.

Return type list of ‘‘TextPlan‘‘s or ‘‘str‘‘s

Returns

pypolibox.debug.gen_textplans(query)
debug function: generates all text plans for a query.

Parameters query (int or list of str) – can be the index of a test query (e.g. 4) OR a list of

query parameters (e.g. [“-k”, “phonology”, “-l”, “German”])

Return type TextPlans

Returns a TextPlans instance, containing a number of text plans

pypolibox.debug.genallmessages(query)
debug function: generates all messages plans for a query.

2.1. pypolibox Package 9

pypolibox Documentation, Release 1.0.2

Parameters query (int or list of str) – can be the index of a test query (e.g. 4) OR a list of

query parameters (e.g. [“-k”, “phonology”, “-l”, “German”])

Return type AllMessages

Returns all messages that could be generated for the query

pypolibox.debug.genmessages(booknumber=0, querynumber=10)
generates all messages for a book regarding a specific database query.

Parameters booknumber (int) – the index of the book from the results list (“0”

would be the first book with the highest score)

Parameters querynumber (int) – the index of a query from the predefined list of

test queries (named ‘testqueries’)

Return type list of ‘‘Message‘‘s

pypolibox.debug.genprops(querynumber=10)
generates all propositions for all books in the database concerning a specific query.

Parameters querynumber (int) – the index of a query from the predefined list of

test queries (named ‘testqueries’)

Return type AllPropositions

pypolibox.debug.msgtypes(messages)
print message types / rst relation types, no matter which data structure is used to represent them

pypolibox.debug.printeach(obj)
prints every item of an iterable on its own line

pypolibox.debug.test_cli(query_arguments=[[], [’-k’, ’pragmatics’], [’-k’, ’pragmatics’, ’-r’, ’4’],
[’-k’, ’pragmatics’, ’semantics’], [’-k’, ’pragmatics’, ’semantics’, ’-r’,
’7’], [’-l’, ’German’], [’-l’, ’German’, ’-p’, ’Lisp’], [’-l’, ’German’, ’-
p’, ’Lisp’, ’-k’, ’parsing’], [’-l’, ’English’, ’-s’, ’0’, ’-c’, ’1’], [’-l’, ’En-
glish’, ’-s’, ’0’, ’-e’, ’1’, ’-k’, ’discourse’], [’-k’, ’syntax’, ’parsing’, ’-l’,
’German’, ’-p’, ’Prolog’, ’Lisp’, ’-s’, ’2’, ’-t’, ’0’, ’-e’, ’1’, ’-c’, ’1’, ’-r’,
’7’]])

run several complex queries and print their results to stdout

2.1.4 facts Module

The facts module takes the information stored in Book instances and converts them into attribute value matrices
(Facts). Furthermore, the module compares each book with its predecessor (e.g. book A is newer than book B and
has code examples, while B is shorter and targets beginners . . .). The insights gathered from these comparisons are
also stored in Facts instances.

class pypolibox.facts.AllFacts(b)
Simply speaking, an AllFacts instance contains all facts about all books that were returned by a database
query. More formally, it contains a Facts instance for each Book in a Books instance.

In a Books instance, all books returned by a database query are sorted by the number of query parameters
they match (‘user model match’) in descending order. This means, that AllFacts will contain facts about the
best-matching book, followed by facts about the second-best matching book (including a comparison to the best
matching one), followed by facts about the third-best matching book (including a comparison to the second one)
etc.

10 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

class pypolibox.facts.Facts(book, book_score, index=0, preceding_book=False)
A Facts instance represents facts about a single book, but also contains a comparison of that particular book
with its predecessor.

generate_extra_facts(index, book)
generates extra_facts, if the current book is very new/old or very short/long.

Parameters

• index (int) – the index of the book in the Books list of books

• book (Book) – a Book instance

Returns a dictionary that contains information about the recency and

length of a book :rtype: dict

generate_id_facts(index, book)
generates a dictionary of id facts about the current book which will be stored in self.
facts["id_facts"]. In contrast to other facts, id_facts are those kind of facts that can be di-
rectly retrieved from the database (i.e. there is no comparison between books or reasoning involved). The
id_facts dictionary contains the following keys:

id_facts keys database book table columns

'authors'
'codeexamples' 'examples'
'exercises'
'keywords'
'language' 'lang'
'pages'
'proglang' 'plang'
'target'
'title'
'year'

The key names should be self-exlanatory. In those cases where they do not exactly match their counterparts
in the database, the corresponding database table column name is given in the table above.

Parameters

• index (int) – the index of the book in the Books list of books

• book (Book) – a Book instance

Returns a dictionary with the keys described above

Return type dict

generate_lastbook_facts(index, book, preceding_book)
generates facts that compare the current book with the preceding one. A typical example of a last-
book_facts dictionary would look like this:

lastbook_facts:
lastbook_nomatch:

{'language': 'German',
'keywords_preceding_book_only':

set(['pragmatics', 'chart parsing']),
'keywords_current_book_only':

set([' ', 'grammar', 'language hierarchy', 'corpora',
'syntax', 'morphology', 'left associative
grammar']),

2.1. pypolibox Package 11

pypolibox Documentation, Release 1.0.2

'codeexamples': 0,
'proglang': set(['Lisp']),
'newer': 11,
'keywords':

set([' ', 'grammar', 'language hierarchy', 'corpora',
'syntax', 'left associative grammar', 'morphology',
'chart parsing', 'pragmatics']),

'proglang_preceding_book_only':
set(['Lisp'])}

lastbook_match:
{'exercises': 1, 'keywords': set(['semantics',
'parsing']), 'target': 0, 'pagerange': 1}

This method will calculate if is newer/older/shorter/longer than its predecessor (if so, it will store the
difference as an integer). For keys that have sets as their values (keywords and proglang), the resulting
dictionary will list which values differed and which were only present in either the preceding or the current
book.

Parameters

• index (int) – the index of the book in the Books list of books

• book (Book) – a Book instance

• preceding_book – if True, there is a book preceding this one

and both books will be compared :type preceding_book: bool

Returns a dictionary with two keys: lastbook_match and

lastbook_nomatch, which in turn are dictionaries themselves and contain facts that are shared be-
tween the two books (lastbook_match) or that differ between the two (lastbook_nomatch).

generate_query_facts(index, book, book_score)
generates facts that describes if a book matches (parts of) the query (a.k.a the user model). a typical
query_facts dictionary will look like this:

query_facts:
usermodel_nomatch: {'codeexamples': 0}
usermodel_match: {'exercises': 1, 'keywords':

set(['semantics', 'parsing']), 'language':
'German'}

book_score: 0.8

The book described in this examples matches 80 % of the user requirements (it contains exercises and
deals with semantics and parsing and is written in German) but does not contain code examples (as was
asked for by the user).

Parameters

• index (int) – the index of the book in the Books list of books

• book (Book) – a Book instance

• book_score – the score of the book that was calculated in

Books.get_book_ranks() :type book_score: float

Returns a dictionary that contains three keys, the book_score,

the usermodel_match as well as the usermodle_nomatch. ‘usermodel_match’ contains all the
features that were requested by the user and are present in the book. ‘usermodle_nomatch’ contains all
features that were requested but are missing from the book. :rtype: dict

12 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

2.1.5 hlds Module

HLDS (Hybrid Logic Dependency Semantics) is the format internally used by the OpenCCG realizer. This module
shall allow the conversion between HLDS-XML files and NLTK feature structures. In addition, it can also be used
as a commandline to convert HLDS-XML files in printable versions of ‘‘nltk.FeatStruct‘‘s. The following command
produces a LaTeX file that can be compiled into a PDF:

python hlds.py --format latex --outfile output.tex input1.xml input2.xml

Alternatively, you can also produce ‘ASCII art’ with this command:

python hlds.py --format nltk --outfile output.tex input1.xml input2.xml

This way, the phrase ‘das Buch’ can be transformed from this HLDS-XML representation:

<?xml version="1.0" encoding="UTF-8"?>
<xml>

<lf>
<satop nom="b1:artefaktum">

<prop name="Buch"/>
<diamond mode="NUM">

<prop name="sing"/>
</diamond>
<diamond mode="ART">

<nom name="d1:sem-obj"/>
<prop name="def"/>

</diamond>
</satop>

</lf>
<target>das Buch</target>

</xml>

To this attribute-value matrix (LaTeX):

\begin{avm}
\[$*$nom$*$ & `b1:artefaktum' \\

$*$prop$*$ & `Buch' \\
$*$text$*$ & `das Buch' \\
NUM & \[prop & `sing' \] \\
ART & \[nom & `d1:sem-obj' \\

prop & `def' \] \\
\]

\end{avm}

or this one (plain text):

[*root_nom* = 'b1:artefaktum']
[*root_prop* = 'Buch']
[*text* = 'das Buch']
[]
[00__NUM = [*mode* = 'NUM']]
[[prop = 'sing']]
[]
[[*mode* = 'ART']]
[01__ART = [nom = 'd1:sem-obj']]
[[prop = 'def']]

2.1. pypolibox Package 13

pypolibox Documentation, Release 1.0.2

class pypolibox.hlds.Diamond(features=None, **morefeatures)
Bases: nltk.featstruct.FeatDict

A {Diamond} represents an HLDS diamond in form of a (nested) feature structure containing the elements
nom? prop? diamond*

<diamond mode="AGENS">
<nom name="s1:addition"/>
<prop name="sowohl"/>
<diamond mode="NP1">

<nom name="h1:nachname"/>
<prop name="Hausser"/>

</diamond>
...

</diamond>

append_subdiamond(subdiamond, mode=None)
appends a subdiamond structure to an existing diamond structure, while allowing to change the mode of
the subdiamond

Parameters mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the diamond already has two subdiamonds (e.g.
“00__AGENS” and “01__PATIENS”) and add a third subdiamond with mode “TEMP”, its identifier will
be “02__TEMP”. if mode is None, the subdiamonds mode will be left untouched.

change_mode(mode)
changes the mode of a Diamond, which is sometimes needed when embedding it into another Diamond
or Sentence.

insert_subdiamond(index, subdiamond_to_insert, mode=None)
insert a Diamond into this one before the index, while allowing to change the mode of the subdiamond.

Parameters mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the diamond already has two subdiamonds (e.g.
“00__AGENS” and “01__PATIENS”) and we’ll insert a third subdiamond at index ‘1’ with mode “TEMP”,
its identifier will be “01__TEMP”, while the remaining two subdiamond identifiers will will be changed
accordingly, e.g. “00__AGENS” and “02__PATIENS”. if mode is None, the subdiamonds mode will be
left untouched.

prepend_subdiamond(subdiamond_to_prepend, mode=None)
prepends a subdiamond structure to an existing diamond structure, while allowing to change the mode of
the subdiamond

Parameters mode (str or NoneType) – the mode that the subdiamond shall have. this will

also be used to determine the subdiamonds identifier. if the diamond already has two subdiamonds (e.g.
“00__AGENS” and “01__PATIENS”) and we’ll prepend a third subdiamond with mode “TEMP”, its
identifier will be “00__TEMP”, while the remaining two subdiamond identifiers will will be incremented
by 1, e.g. “01__AGENS” and “02__PATIENS”. if mode is None, the subdiamonds mode will be left
untouched.

class pypolibox.hlds.HLDSReader(hlds, input_format=’file’)
represents a list of sentences (as NLTK feature structures) parsed from an HLDS XML testbed file.

parse_sentence(sentence, single_sent=True)

14 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

parse_sentences(tree)
Parses all sentences (represented as HLDS XML structures) into feature structures. These structures are
saved as a list of ‘‘Sentence‘‘s in self.sentences.

If there’s only one sentence in a file, it’s root element is <xml>. If there’s more than one, they are each
<xml> sentence “roots” is wrapped in an <item>. . . </item> (and <regression> becomes the root tag of the
document).

Parameters tree (etree._ElementTree) – an etree tree element

class pypolibox.hlds.Sentence(features=None, **morefeatures)
Bases: nltk.featstruct.FeatDict

represents an HLDS sentence as an NLTK feature structure.

create_sentence(sent_str, expected_parses, root_nom, root_prop, diamonds)
wraps all ‘‘Diamond‘‘s that were already constructed by HLDSReader.parse_sentences() plus some meta
data (root verb etc.) into a NLTK feature structure that represents a complete sentence.

Parameters

• sent_str (str) – the text that should be generated

• expected_parses (int) – the expected number of parses

• root_prop (str) – the root element of that text (in case we’re

actually generating a sentence: the main verb)

Parameters

• root_nom (str) – the root (element/verb) category, e.g. “b1:handlung”

• diamonds (list of ‘‘Diamond‘‘s) – a list of the diamonds that are contained in the

sentence

pypolibox.hlds.add_mode_suffix(diamond, mode=’N’)

pypolibox.hlds.add_nom_prefixes(diamond)
Adds a prefix/index to the name attribute of every <nom> tag of a Diamond or Sentence structure. Without
this, ccg-realize will only produce gibberish.

Every <nom> tag has a ‘name’ attribute, which contains a category/type-like description of the corresponding
<prop> tag’s name attribute, e.g.:

<diamond mode="PRÄP">
<nom name="v1:zugehörigkeit"/>
<prop name="von"/>

</diamond>

Here ‘zugehörigkeit’ is the name of a category that the preposition ‘von’ belongs to. usually, the nom prefix is
the first character of the prop name attribute with an added index. index iteration is done by a depth-first walk
through all diamonds contained in the given feature structure. In this example ‘v1:zugehörigkeit’ means, that
“von” is the first diamond in the structure that starts with ‘v’ and belongs to the category ‘zugehörigkeit’.

pypolibox.hlds.convert_diamond_xml2fs(etree)
transforms a HLDS XML <diamond>. . . </diamond> structure (that was parsed into an etree element) into an
NLTK feature structure.

Parameters etree_or_tuple (etree._Element) – a diamond etree element

Return type Diamond

2.1. pypolibox Package 15

pypolibox Documentation, Release 1.0.2

pypolibox.hlds.create_diamond(mode, nom, prop, nested_diamonds_list)
creates an HLDS feature structure from scratch (in contrast to convert_diamond_xml2fs, which converts an
HLDS XML structure into its corresponding feature structure representation)

NOTE: I’d like to simply put this into __init__, but I don’t know how to subclass FeatDict properly. Feat-
Dict.__new__ complains about Diamond.__init__(self, mode, nom, prop, nested_diamonds_list) having too
many arguments.

pypolibox.hlds.create_hlds_file(sent_or_sent_list, mode=’test’, output=’etree’)
this function transforms ‘‘Sentence‘‘s into a a valid HLDS XML testbed file

Parameters

• sent_or_sent_list (Sentence or list of ‘‘Sentence‘‘s) – a Sentence or a list
of ‘‘Sentence‘‘s

• mode (str) – “test”, if the sentence will be part of a (regression)

testbed file (ccg-test). “realize”, if the sentence will be put in a file on its own (ccg-realize).

Parameters output (str) – “etree” (etree element) or “xml” (formatted, valid xml

document as a string)

Return type str

pypolibox.hlds.diamond2sentence(diamond)
Converts a Diamond feature structure into a Sentence feature structure. This becomes necessary whenever we
want to realize a short utterance, e.g. “die Autoren” or “die Themen Syntax und Pragmatik”.

Note: OpenCCG does not really distinguish between a sentence and smaller units of meaning. It simply assigns
the <sentence> tag to every HLDS structure it realizes, whereas each substructure of this “sentence” (no matter
how complex) is labelled as a <diamond>.

Return type Sentence

pypolibox.hlds.etreeprint(element, debug=True, raw=False)
pretty print function for etree trees or elements

Parameters debug – if True: not only return the XML string, but also print it to

stdout. if False: only return the XML string

Parameters raw – if True: just transform the etree (element) into a string,

don’t add or prettify anything. if False: add an XML declaration and use pretty print to make the output more
readable for humans.

pypolibox.hlds.featstruct2avm(featstruct, mode=’non-recursive’)
converts an NLTK feature structure into an attribute-value matrix that can be printed with LaTeX’s avm envi-
ronment.

Return type str

pypolibox.hlds.hlds2xml(featstruct)
debug function that returns the string representation of a feature structure (Diamond or Sentence) and its HLDS
XML equivalent.

Return type str

16 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

pypolibox.hlds.last_diamond_index(featstruct)
Returns the highest index currently used withing a given Diamond or Sentence. E.g., if this structure con-
tains three diamonds (“00__ART”, “01__NUM” and “02__TEMP”), the return value will be 2. The return value
is -1, if the feature structure doesn’t contain any ‘‘Diamond‘‘s.

Return type int

pypolibox.hlds.main()
parse command line args and do the conversions

pypolibox.hlds.remove_nom_prefixes(diamond)

pypolibox.hlds.test_conversion()
tests HLDS XML <-> NLTK feature structures conversions. converts an HLDS XML testbed file into a list
of sentences in NLTK feature structure. picks one of these sentences randomly and converts it back to HLDS
XML. prints boths versions of this sentence. returns an HLDSReader instance (containing a list of ‘‘Sentence‘‘s
in NLTK feature structure notation) and a HLDS XML testbed file (as a string) created from those feature
structures.

Return type tuple of (HLDSReader, str)

Returns a tuple containing an HLDSReader instance and a string

representation of an HLDS XML testbed file

2.1.6 lexicalization Module

2.1.7 lexicalize_messageblocks Module

2.1.8 messages Module

The messages module contains the Message class and related classes.

Message``s contain propositions about books. The text planner applies
``Rule``s to these ``Message``s to form ``ConstituentSet``s. ``Rule``s will
also be applied to ``ConstituentSet``s, ultimately forming one ``TextPlan that
contains all the information to be realized.

class pypolibox.messages.AllMessages(allpropositions)
represents all Messages generated from AllPropositions about all Books() that were returned by a query

class pypolibox.messages.Message(msgType=None)
Bases: nltk.featstruct.FeatDict

A Message combines and stores knowledge about an object (here: books) in a logical structure. Messages
are constructed during content selection (taking the user’s requirements, querying a database and processing its
results), which precedes text planning.

Each Message has a msgType which describes the kind of information it includes. For example, the msgType
‘id’ specifies information that is needed to distinguish a book from other books:

[*msgType* = 'id']
[authors = frozenset(['Roland Hausser'])]
[codeexamples = 0]
[language = 'German']
[pages = 572]
[proglang = frozenset([])]
[target = 0]

2.1. pypolibox Package 17

pypolibox Documentation, Release 1.0.2

[title = 'Grundlagen der Computerlinguistik']
[year = 2000]

class pypolibox.messages.Messages(propositions)
represents all Message instances generated from Propositions about a Book.

add_identification_to_message(message)
Adds special ‘reference_title’ and ‘reference_authors’ attributes to messages other than the id_message.

In contrast to the id_message, other messages will not be used to produce sentences that contain their
content (i.e. no statement of the ‘author X wrote book Y in 1979’ generated from an ‘extra_message’ or a
‘lastbook_nomatch’ message). Nevertheless, they will need to make reference to the title and the authors
of the book (e.g. ‘Y is a rather short book’). As an example, look at this ‘usermodel_match’ message:

[*msgType* = 'usermodel_match']
[*reference_authors* = frozenset(['Ulrich Schmitz'])]
[*reference_title* = 'Computerlinguistik. Eine Einführung']
[language = 'German']
[proglang = frozenset(['Lisp'])]

The message contains two bits of information (the language and programming language used), which both
have regular strings as keys. The ‘referential’ keys on the other hand are nltk.Feature instances and
not strings. This distinction should be regarded as a syntactic trick used to emphasize a semantic differce
(READ: if you have a better solution, please change it).

generate_extra_message(proposition_dict)
generates a Message from an ‘extra’ Proposition. Extra propositions only exist if a book is remark-
ably new / old or very short / long.

generate_lastbook_nomatch_message(proposition_dict)
generates a Message from a ‘lastbook_nomatch’ Proposition. A lastbook_nomatch propositions
states which differences exist between two books.

generate_message(proposition_type)
generates a Message from a ‘simple’ Proposition. Simple propositions are those kinds of propos-
tions that only give information about one item (i.e. describe one book) but don’t compare two items (e.g.
book A is 12 years older than book B).

2.1.9 propositions Module

The propositions module evaluates the facts generated by the pypolibox.facts module and stores its results
as nested dictionaries.

class pypolibox.propositions.AllPropositions(allfacts)
contains propositions about ALL the books that were listed in a query result

class pypolibox.propositions.Propositions(facts)
represents propositions (positive/negative/neutral ratings) of a single book. Propositions() are generated from
Facts() about a Book().

2.1.10 pypolibox Module

The pypolibox module is the ‘main’ module of the pypolibox package. It’s the module you’d usually call from the
command line or load into your Python interpreter. It just imports all the important modules and runs some demo code
in case it is run from the command line without any arguments.

18 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

pypolibox.pypolibox.check_and_realize_textplan(openccg, textplan, lexical-
ize_message_block, phrase2sentence)

realizes a text plan and warns about message blocks that cannot be realized due to current restrictions in the
OpenCC grammar.

Parameters

• openccg (OpenCCG) – a running OpenCCG instance

• textplan (TextPlan) – text plan to be realized

pypolibox.pypolibox.generate_textplans(query)
generates all text plans for a database query

pypolibox.pypolibox.initialize_openccg(lang=’de’)
starts OpenCCG’s tccg realizer as a server in the background (ca. 20s).

pypolibox.pypolibox.main()
This is the pypolibox commandline interface. It allows you to query the database and generate book recommen-
datins, which will either be handed to OpenCCG for generating sentences or printed to stdout in an XML format
representing the text plans.

pypolibox.pypolibox.test()
test and realize all text plans for all test queries

2.1.11 realization Module

The realization module shall take HLDS XML structures, realize them with the OpenCCG surface realizer and
parse its output string.

class pypolibox.realization.OpenCCG(grammar_dir=’/home/docs/checkouts/readthedocs.org/user_builds/pypolibox/envs/latest/local/lib/python2.7/site-
packages/pypolibox-1.0.2-
py2.7.egg/pypolibox/grammar’, lang=’de’)

Bases: object

command-line interaction with OpenCCG’s tccg parser/generator, which can either be run as a JSON-RPC
server or simply imported as a Python module.

parse(text, verbose=True, raw_output=True)
This is the core interaction with the parser.

It returns a Python data-structure, while the parse() function returns a JSON object

Returns if raw_output=True, the raw response string from the server

will be returned. otherwise, a list of dictionaries will be returned (one for each input sentence). :rtype:
str OR list of ‘‘dict‘‘s

realize(featstruct, raw_output=True)
converts a Diamond or Sentence feature structure into HLDS-XML, write it to a temporary file, realizes
this file with tccg and parses the output it returns.

realize_hlds(hlds_xml_filename)

terminate()

pypolibox.realization.parse_tccg_generator_output(tccg_output)
parses the output string returned from tccg’s interactive generator shell.

2.1. pypolibox Package 19

pypolibox Documentation, Release 1.0.2

2.1.12 rules Module

The rules module contains rules, which are used by the text planner to combine messages into constituent sets and
ultimately form one TextPlan.

class pypolibox.rules.ConstituentSet(relType=None, nucleus=None, satellite=None)
Bases: nltk.featstruct.FeatDict

ConstituentSet is the contstuction built up by applying Rules to a set of ConstituentSet``s and
``Message``s. Each ``ConstituentSet is of a specific relType, and has two constituents, one
which is designated the nucleus and one which is designated aux. These ‘‘ConstituentSet‘‘s can then be
combined with other ‘‘ConstituentSet‘‘s or ‘‘Message‘‘s.

ConstituentSet is based on nltk.featstruct.FeatDict.

class pypolibox.rules.Rule(name, ruleType, nucleus, satellite, conditions, heuristic)
Bases: object

Rules are the elements which specify relationships which hold between elements of the document. These
elements can be ‘‘Message‘‘s or ‘‘ConstituentSet‘‘s.

Each Rule specifies a list of inputs, which are is a minimal specification of a Message or
ConstituentSet. To be a valid input to this Rule, a given Message or ConstituentSet must sub-
sume one of the specified ‘‘input‘‘s.

Each Rule can also specify a set of conditions which must be met in order for the Rule to hold between the
inputs.

Each Rule specifies a heuristic, which will be evaluated to provide a score by which to rank the order in which
rules should be applied.

Each Rule specifies which of the inputs will be the nucleus and which will be the aux of the output
ConstituentSet.

find_message_candidates(messages, message_prototype)
takes a list of messages and returns only those with the right message type (as specified in Rule.inputs)

Parameters messages (list of ‘‘Message‘‘s) – a list of Message objects, each containing
one

message about a book

Parameters message_prototype – a tuple consisting of a message name and a

Message or ConstituentSet :type message_prototype: tuple of (string, Message or
ConstituentSet)

Return type list of tuple``s of (string, ``Message)

Returns a list containing all (name, message) tuples which are

subsumed by the input message type (self.nucleus or self.satellite). If a rule should only be applied to
UserModelMatch and UserModelNoMatch messages, the return value contains a list of messages with
these types.

get_conditions(group)
applies __name_eval to all conditions a Rule has, i.e. checks if a group meets all conditions

ConstituentSet) :param group: a list of message tuples of the form (message name, message)

Return type list of bool

Returns a list of truth values, each of which tells if a group met

20 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

all conditions specified in self.conditions

get_options(messages)
this is the main method used for document planning

From the list of Messages, get_options selects all possible ways the Rule could be applied.

The planner can then select with the textplan.__bottom_up_search function one of these possi-
ble applications of the Rule to use.

non_empty_message_combinations is a list of combinations, where each combination is a (nu-
cleus, satellite)-tuple. both the nucleus and the satellite each consist of a (name, message) tuple.

The method returns an empty list if get_options can’t find a way to apply the Rule.

Parameters messages (list of Message objects) – a list of Message objects, each contain-
ing one

message about a book

Return type empty list or a list containing one tuple of (int,

ConstituentSet, list), where list consists of Message or ConstituentSet objects :return:
a list containing one 3-tuple (score, ConstituentSet, inputs) where:

• score is the evaluated heuristic score for this application of

the Rule - ConstituentSet is the new ConstituentSet instance returned by the application of
the Rule - inputs is the list of inputs (Message``s or ``ConstituentSets used in this
application of the rule

get_satisfactory_groups(groups)

Message or ConstituentSet) :param groups: a list of group elements. each group contains a list
which contains one or more message tuples of the form (message name, message)

Return type list of list’s of tuple’s of (str, Message

or ConstituentSet) :return: a list of group elements. contains only those groups which meet all the
conditions specified in self.conditions

class pypolibox.rules.Rules
creates Rule() instances

Each rule of the form Rule(ruleType, inputs, conditions, nucleus, aux, heuristic) is generated by its own method.
Important note: these methods have to adhere to a naming convention, i.e. begin with ‘genrule_’; otherwise,
self.__init__ will fail!

genrule_book_differences()
Contrast({id, id_extra_sequence}, lastbook_nomatch)

Meaning: id/id_extra_sequence. In contrast to book X, this book is in German, targets advanced users and
. . . Condition: There are differences between the two books

genrule_book_similarities()
Elaboration(id_usermodelmatch, lastbook_match)

Meaning: ‘id_usermodelmatch’ mentions that the books matches ALL requirements. In addition, the
book shares many features with its predecessor. Condition: There are both differences and commonalities
(>=50%) between the two books.

genrule_compare_eval()
Sequence(concession_books, {pos_eval, neg_eval, usermodel_match, usermodel_nomatch})

2.1. pypolibox Package 21

pypolibox Documentation, Release 1.0.2

Meaning: ‘concession_books’ describes common and diverging features of the books.
‘pos_eval/neg_eval/usermodel_match/usermodel_nomatch’ explains how many user requirements
they meet

genrule_concession_book_differences_usermodelmatch()
Concession(book_differences, usermodel_match)

Meaning: ‘book_differences’ explains the differences between both books. Nevertheless, this book meets
ALL your requirements . . . Condition: All user requirements are met.

genrule_concession_books()
Concession(book_differences, lastbook_match)

Meaning: After ‘book_differences’ explains the differences between both books, their common features
are explained.

genrule_contrast_books_posneg_eval()
Sequence(book_differences, {pos_eval, neg_eval})

Meaning: book_differences mentions the differences between the books, pos_eval/neg_eval explains how
many user requirements they meet Conditions: matches some of the requirements

genrule_id_extra_sequence()
Sequence(id_complete, extra), if ‘extra’ exists:

adds an additional “sentence” about extra facts after the id messages

genrule_id_usermodelmatch()
Elaboration({id, id_extra_sequence}, usermodel_match), if there’s no usermodel_nomatch

Meaning: This book fulfills ALL your requirments. It was written in . . . , contains these features . . . and
. . . etc

genrule_neg_eval()
Concession(usermodel_nomatch, usermodel_match)

Meaning: Although this book fulfills some of your requirements, it doesn’t match most of them. Therefore,
this book might not be the best choice.

genrule_no_similarities_concession()
Concession({id, id_extra_sequence}, lastbook_nomatch)

Meaning: Book X has these features BUT share none of them with its predecessor. Condition: There is a
predecessor to this book, but they don’t share ANY features.

genrule_pos_eval()
Concession(usermodel_match, usermodel_nomatch)

Meaning: Book matches many (>= 50%) of the requirements, but not all of them

genrule_single_book_complete()
Sequence({id, id_extra_sequence}, {pos_eval, neg_eval})

Meaning: The nucleus mentions all the (remaining) facts (that aren’t mentioned in the evaluation), while
the satellite evaluates the book (in terms of usermodel matches)

genrule_single_book_complete_usermodelmatch()
Sequence({id, id_extra_sequence}, usermodel_match)

Meaning: The satellite states that the book matches ALL the user’s requirements. The nucleus mentions
the remaining facts about the book. Condition: there’s no preceding book and there are only usermodel
matches.

22 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

genrule_single_book_complete_usermodelnomatch()
Sequence({id, id_extra_sequence}, usermodel_nomatch)

Meaning: The satellite states that the book matches NONE of the user’s requirements. The nucleus men-
tions the remaining facts about the book. Condition: there’s no preceding book and there are no usermodel
matches.

2.1.13 textplan Module

The textplan module is based on Nicholas FitzGerald’s py_docplanner``[1], in particular
on his idea to represent RST trees as attribute value matrices by using the
``nltk.featstruct data structure.

textplan converts Proposition instances into Message``s (using attribute value
notation). Via a set of ``Rule``s, these messages are combined into
``ConstituentSet``s. Rules are applied bottom-up, via a recursive best-first
search (cf. ``__bottom_up_search).

Not only messages, but also constituent sets can be combined via rules. If all messages present can be combined into
one large ConstituentSet, this constituent set is called a TextPlan. A TextPlan represents a complete text
plan in form of an attribute value matrix.

[1] Fitzgerald, Nicholas (2009). Open-Source Implementation of Document Structuring Algorithm for NLTK.

class pypolibox.textplan.TextPlan(book_score=None, dtype=’TextPlan’, text=None, chil-
dren=None)

Bases: nltk.featstruct.FeatDict

TextPlan is the output of Document Planning. A TextPlan consists of an optional title and text, and a child
ConstituentSet.

TODO: append __str__ method: should describe verbally if a TP is describing one book or comparing two
books

class pypolibox.textplan.TextPlans(allmessages, debug=False)
Bases: object

generates all TextPlan``s for an ``AllMessages instance, i.e. one DocumentPlan for each book
that is returned as a result of the user’s database query

pypolibox.textplan.generate_textplan(messages, rules=[<pypolibox.rules.Rule object>,
<pypolibox.rules.Rule object>, <pypolibox.rules.Rule
object>, <pypolibox.rules.Rule object>, <pypoli-
box.rules.Rule object>, <pypolibox.rules.Rule
object>, <pypolibox.rules.Rule object>, <pypoli-
box.rules.Rule object>, <pypolibox.rules.Rule object>,
<pypolibox.rules.Rule object>, <pypolibox.rules.Rule
object>, <pypolibox.rules.Rule object>, <pypoli-
box.rules.Rule object>, <pypolibox.rules.Rule ob-
ject>], book_score=None, dtype=’TextPlan’, text=”)

The main method implementing the Bottom-Up document structuring algorithm from “Building Natural Lan-
guage Generation Systems” figure 4.17, p. 108.

The method takes a list of Message``s and a set of ``Rule``s and creates a
document plan by repeatedly applying the highest-scoring Rule-application
(according to the Rule's heuristic score) until a full tree is created.
This is returned as a ``TextPlan with the tree set as children.

If no plan is reached using bottom-up, None is returned.

2.1. pypolibox Package 23

pypolibox Documentation, Release 1.0.2

Parameters messages – a list of ‘‘Message‘‘s which have been selected during

content selection for inclusion in the TextPlan :type messages: list of Message``s :param rules:
a list of ``Rule``s specifying relationships which can hold between the
messages :type rules: list of ``Rule``s :param dtype: an optional type
for the document :type dtype: string :param text: an optional text
string describing the document :type text: string :return: a document
plan. if no plan could be created: return None :rtype: ``TextPlan or
NoneType

pypolibox.textplan.linearize_textplan(textplan)
takes a text plan (an RST tree represented as a NLTK.featstruct data structure) and returns an ordered list of
‘‘Message‘‘s for surface generation.

Return type list of ‘‘Message‘‘s

pypolibox.textplan.test_textplan2xml_conversion()
test text plan to XML conversion with all the text plans that were generated for all test queries with de-
bug.gen_all_textplans().

pypolibox.textplan.textplan2xml(textplan)
converts one TextPlan into an XML structure representing it.

Return type etree._ElementTree

pypolibox.textplan.textplans2xml(textplans)
converts several ‘‘TextPlan‘‘s into an XML structure representing these text plans.

Return type etree._ElementTree

2.1.14 util Module

The util module contains a number of ‘bread and butter’ functions that are needed to run pypolibox, but are not
particularly interesting (e.g. format converters, existence checks etc.).

There shouldn’t be any code in this module that require loading other modules from pypolibox!

pypolibox.util.ensure_unicode(string_or_int)
ensures that a string does use unicode instead of UTF8. converts integer input to a unicode string.

pypolibox.util.ensure_utf8(string_or_int)
ensures that a string does not use unicode but UTF8. converts integer input to a string.

pypolibox.util.exists(thing, namespace)
checks if a variable/object/instance exists in the given namespace

Return type bool

pypolibox.util.flatten(nested_list)
flattens a list, where each list element is itself a list

Parameters nested_list (list) – the nested list

Returns flattened list

pypolibox.util.freeze_all_messages(message_list)
makes all messages (‘‘FeatDict‘‘s) immutable, which is necessary for turning them into sets

pypolibox.util.msgs_instance_to_list_of_msgs(messages_instance)
converts a Messages instance into a list of Message instances

24 Chapter 2. pypolibox

pypolibox Documentation, Release 1.0.2

pypolibox.util.sql_array_to_list(sql_array)
converts SQL string “arrays” into a list of strings

Our book database uses ‘[‘ and ‘]’ to handle attributes w/ more than one value: e.g. authors = ‘[Noam Chom-
sky][Alan Touring]’. This function turns those multi-value strings into a set with separate values.

Parameters sql_array (str) – a string from the database that represents one or

more items delimited by ‘[‘ and ‘]’, e.g. “[Noam Chomsky]” or “[Noam Chomsky][Alan Touring]”

Return type list of str

Returns a list of strings, where each string represents one item from

the database, e.g. [“Noam Chomsky”, “Alan Touring”]

pypolibox.util.sql_array_to_set(sql_array)
converts SQL string “arrays” into a set of strings

our book database uses ‘[‘ and ‘]’ to handle attributes w/ more than one value: e.g. authors = ‘[Noam Chom-
sky][Alan Touring]’

this function turns those multi-value strings into a set with separate values

Parameters sql_array (str) – a string from the database that represents one or

more items delimited by ‘[‘ and ‘]’, e.g. “[Noam Chomsky]” or “[Noam Chomsky][Alan Touring]”

Return type set of str

Returns a set of strings, where each string represents one item from

the database, e.g. [“Noam Chomsky”, “Alan Touring”]

pypolibox.util.write_to_file(str_or_obj, file_path)
takes a string and writes it to a file or takes any other object, pickles it and writes it to a file

2.1. pypolibox Package 25

pypolibox Documentation, Release 1.0.2

26 Chapter 2. pypolibox

CHAPTER 3

News

3.1 1.0.2 (2014-05-17)

Release data: 17-May-2014

• added Windows-specific requirements to setup.py (winpexpect vs. pexpect)

• README now covers installation prerequisites

3.2 1.0.1 (2014-05-13)

Release date: 13-May-2014

• installation via pip or python setup.py install now adds two programs to your path: pypolibox
and hlds-converter

• added new output formats (--output-format parameter): textplan featstructs, HLDS XML

• documentation is now hosted at readthedocs.org

• converted documentation from epydoc to sphinx

• added make file, license file

3.3 1.0.0 (2014-30-04)

Release date: 30-Apr-2014

• pypolibox is now licensed under GPLv3

• OpenCCG grammar fragment (CC-BY-NC-SA 4.0 licensed) now shipped with code

• first release via PyPI

27

http://pypolibox.readthedocs.org

pypolibox Documentation, Release 1.0.2

• got rid of configuration file

• fixed some errors in the documentation

28 Chapter 3. News

CHAPTER 4

To-do list

• Theory/Structure: Rewrite rules for the textplanner. RST relations should combine messages, not message
blocks. (A message should be something that can be expressed in a single sentence.)

• Coverage: Update the lexicalization module once the grammar fragment is “completed”.

• Consistency: Make keys unique. Instead of three different “recency” keys, there should be a regular one, an
“extra_recency” key (‘This book is particularly recent/old’) and a “relative_recency” key (‘This book is 20 years
older than the other one’).

• Consistency: In “extra recency” messages, “values” are called “descriptions”.

• Unicode: If NLTK becomes available for Python 3, switch to that branch. Otherwise, evaluate if porting
nltk.featstruct to Python 3 is feasible (e.g. with the help of python2to3).

29

pypolibox Documentation, Release 1.0.2

30 Chapter 4. To-do list

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

31

pypolibox Documentation, Release 1.0.2

32 Chapter 5. Indices and tables

Python Module Index

p
pypolibox.__init__, 7
pypolibox.database, 7
pypolibox.debug, 8
pypolibox.facts, 10
pypolibox.hlds, 13
pypolibox.messages, 17
pypolibox.propositions, 18
pypolibox.pypolibox, 18
pypolibox.realization, 19
pypolibox.rules, 20
pypolibox.textplan, 23
pypolibox.util, 24

33

pypolibox Documentation, Release 1.0.2

34 Python Module Index

Index

A
abbreviate_textplan() (in module pypolibox.debug), 8
add_identification_to_message() (pypoli-

box.messages.Messages method), 18
add_mode_suffix() (in module pypolibox.hlds), 15
add_nom_prefixes() (in module pypolibox.hlds), 15
AllFacts (class in pypolibox.facts), 10
AllMessages (class in pypolibox.messages), 17
AllPropositions (class in pypolibox.propositions), 18
append_subdiamond() (pypolibox.hlds.Diamond

method), 14
apply_rule() (in module pypolibox.debug), 9

B
Book (class in pypolibox.database), 7
Books (class in pypolibox.database), 7

C
change_mode() (pypolibox.hlds.Diamond method), 14
check_and_realize_textplan() (in module pypoli-

box.pypolibox), 18
compare_hlds_variants() (in module pypolibox.debug), 9
compare_textplans() (in module pypolibox.debug), 9
ConstituentSet (class in pypolibox.rules), 20
convert_diamond_xml2fs() (in module pypolibox.hlds),

15
create_diamond() (in module pypolibox.hlds), 15
create_hlds_file() (in module pypolibox.hlds), 16
create_sentence() (pypolibox.hlds.Sentence method), 15

D
Diamond (class in pypolibox.hlds), 13
diamond2sentence() (in module pypolibox.hlds), 16

E
ensure_unicode() (in module pypolibox.util), 24
ensure_utf8() (in module pypolibox.util), 24
enumprint() (in module pypolibox.debug), 9
etreeprint() (in module pypolibox.hlds), 16

exists() (in module pypolibox.util), 24

F
Facts (class in pypolibox.facts), 10
featstruct2avm() (in module pypolibox.hlds), 16
find_applicable_rules() (in module pypolibox.debug), 9
find_message_candidates() (pypolibox.rules.Rule

method), 20
findrule() (in module pypolibox.debug), 9
flatten() (in module pypolibox.util), 24
freeze_all_messages() (in module pypolibox.util), 24

G
gen_all_messages_of_type() (in module pypoli-

box.debug), 9
gen_all_textplans() (in module pypolibox.debug), 9
gen_textplans() (in module pypolibox.debug), 9
genallmessages() (in module pypolibox.debug), 9
generate_extra_facts() (pypolibox.facts.Facts method), 11
generate_extra_message() (pypoli-

box.messages.Messages method), 18
generate_id_facts() (pypolibox.facts.Facts method), 11
generate_lastbook_facts() (pypolibox.facts.Facts

method), 11
generate_lastbook_nomatch_message() (pypoli-

box.messages.Messages method), 18
generate_message() (pypolibox.messages.Messages

method), 18
generate_query_facts() (pypolibox.facts.Facts method),

12
generate_textplan() (in module pypolibox.textplan), 23
generate_textplans() (in module pypolibox.pypolibox), 19
genmessages() (in module pypolibox.debug), 10
genprops() (in module pypolibox.debug), 10
genrule_book_differences() (pypolibox.rules.Rules

method), 21
genrule_book_similarities() (pypolibox.rules.Rules

method), 21
genrule_compare_eval() (pypolibox.rules.Rules method),

21

35

pypolibox Documentation, Release 1.0.2

genrule_concession_book_differences_usermodelmatch()
(pypolibox.rules.Rules method), 22

genrule_concession_books() (pypolibox.rules.Rules
method), 22

genrule_contrast_books_posneg_eval() (pypoli-
box.rules.Rules method), 22

genrule_id_extra_sequence() (pypolibox.rules.Rules
method), 22

genrule_id_usermodelmatch() (pypolibox.rules.Rules
method), 22

genrule_neg_eval() (pypolibox.rules.Rules method), 22
genrule_no_similarities_concession() (pypoli-

box.rules.Rules method), 22
genrule_pos_eval() (pypolibox.rules.Rules method), 22
genrule_single_book_complete() (pypolibox.rules.Rules

method), 22
genrule_single_book_complete_usermodelmatch()

(pypolibox.rules.Rules method), 22
genrule_single_book_complete_usermodelnomatch()

(pypolibox.rules.Rules method), 22
get_book_ranks() (pypolibox.database.Books method), 7
get_column() (in module pypolibox.database), 8
get_conditions() (pypolibox.rules.Rule method), 20
get_number_of_book_matches() (pypoli-

box.database.Book method), 7
get_number_of_possible_matches() (pypoli-

box.database.Results method), 8
get_options() (pypolibox.rules.Rule method), 21
get_satisfactory_groups() (pypolibox.rules.Rule method),

21
get_table_header() (pypolibox.database.Results method),

8

H
hlds2xml() (in module pypolibox.hlds), 16
HLDSReader (class in pypolibox.hlds), 14

I
initialize_openccg() (in module pypolibox.pypolibox), 19
insert_subdiamond() (pypolibox.hlds.Diamond method),

14

L
last_diamond_index() (in module pypolibox.hlds), 16
linearize_textplan() (in module pypolibox.textplan), 24

M
main() (in module pypolibox.hlds), 17
main() (in module pypolibox.pypolibox), 19
Message (class in pypolibox.messages), 17
Messages (class in pypolibox.messages), 18
msgs_instance_to_list_of_msgs() (in module pypoli-

box.util), 24
msgtypes() (in module pypolibox.debug), 10

O
OpenCCG (class in pypolibox.realization), 19

P
parse() (pypolibox.realization.OpenCCG method), 19
parse_sentence() (pypolibox.hlds.HLDSReader method),

14
parse_sentences() (pypolibox.hlds.HLDSReader

method), 14
parse_tccg_generator_output() (in module pypoli-

box.realization), 19
prepend_subdiamond() (pypolibox.hlds.Diamond

method), 14
printeach() (in module pypolibox.debug), 10
Propositions (class in pypolibox.propositions), 18
pypolibox.__init__ (module), 7
pypolibox.database (module), 7
pypolibox.debug (module), 8
pypolibox.facts (module), 10
pypolibox.hlds (module), 13
pypolibox.messages (module), 17
pypolibox.propositions (module), 18
pypolibox.pypolibox (module), 18
pypolibox.realization (module), 19
pypolibox.rules (module), 20
pypolibox.textplan (module), 23
pypolibox.util (module), 24

Q
Query (class in pypolibox.database), 7

R
realize() (pypolibox.realization.OpenCCG method), 19
realize_hlds() (pypolibox.realization.OpenCCG method),

19
remove_nom_prefixes() (in module pypolibox.hlds), 17
Results (class in pypolibox.database), 8
Rule (class in pypolibox.rules), 20
Rules (class in pypolibox.rules), 21

S
Sentence (class in pypolibox.hlds), 15
sql_array_to_list() (in module pypolibox.util), 24
sql_array_to_set() (in module pypolibox.util), 25

T
terminate() (pypolibox.realization.OpenCCG method), 19
test() (in module pypolibox.pypolibox), 19
test_cli() (in module pypolibox.debug), 10
test_conversion() (in module pypolibox.hlds), 17
test_textplan2xml_conversion() (in module pypoli-

box.textplan), 24
TextPlan (class in pypolibox.textplan), 23

36 Index

pypolibox Documentation, Release 1.0.2

textplan2xml() (in module pypolibox.textplan), 24
TextPlans (class in pypolibox.textplan), 23
textplans2xml() (in module pypolibox.textplan), 24

W
write_to_file() (in module pypolibox.util), 25

Index 37

	pypolibox
	Installation
	Usage
	Documentation
	Package Overview
	Licence
	Contributors
	Acknowledgements

	pypolibox
	pypolibox Package

	News
	1.0.2 (2014-05-17)
	1.0.1 (2014-05-13)
	1.0.0 (2014-30-04)

	To-do list
	Indices and tables
	Python Module Index

